Financial Fragility with SAM?

 $Daniel\ Greenwald^1 \quad Tim\ Landvoigt^2 \quad Stijn\ Van\ Nieuwerburgh^3$

¹MIT Sloan

²Wharton, NBER, and CEPR

³Columbia GSB, NBER, and CEPR

Federal Reserve Board of Governors September 2018

- Standard mortgage contracts share house price risk in a particular way
 - Borrower bears all house price risk until default
 - Lender bears tail risk when house prices fall enough to trigger default

- Standard mortgage contracts share house price risk in a particular way
- Foreclosure crisis called into question this risk-sharing arrangement
 - Seven million U.S. home owners lost their homes
 - Large deadweight losses associated with foreclosure

- Standard mortgage contracts share house price risk in a particular way
- Foreclosure crisis called into question this risk-sharing arrangement
- Led economists to propose alternative risk-sharing arrangements
 - Popular proposal: Shared Appreciation Mortgage (SAM)
 - Payments fall if house price declines, staving off foreclosures
 - Lender receives share of the upside upon sale

- Standard mortgage contracts share house price risk in a particular way
- ► Foreclosure crisis called into question this risk-sharing arrangement
- Led economists to propose alternative risk-sharing arrangements
- But is it safe to shift house price losses to lenders?
 - Banks and credit unions hold \$5.5T in mortgage debt on balance sheets
 - Large undiversifiable component to house price risk
 - Losses inflicted at times when banks may be fragile already
 - Offset by improved risk sharing/reduced defaults? Need GE model.

- Standard mortgage contracts share house price risk in a particular way
- Foreclosure crisis called into question this risk-sharing arrangement
- ▶ Led economists to propose alternative risk-sharing arrangements
- But is it safe to shift house price losses to lenders?
- Broader research question: What are equilibrium implications of alternative risk sharing arrangements in world where financial intermediaries enjoy deposit insurance and bailout guarantees?

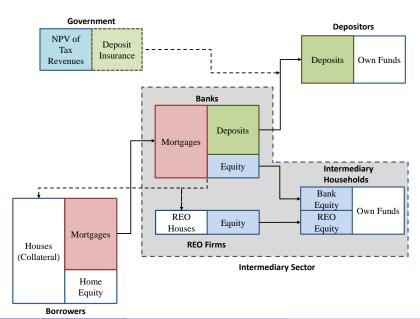
This Paper

- ► Concrete question: how do Shared Appreciation Mortgage (SAM) contracts influence financial stability and risk sharing?
- ▶ **Approach**: build a GE model of mortgage and housing market with explicit financial sector that intermediates between borrowers and savers.
 - Start from realistic mortgage debt contracts: long-term, nominal, prepayable, defaultable
 - Consider different forms of mortgage payment indexation (SAMs)

Main insights:

- 1. Indexing to aggregate house prices increases financial fragility
- 2. Indexing to relative local prices can dampen fragility
- 3. Schemes that help risk sharing often hurt financial sector profits

This Paper


- ► Concrete question: how do Shared Appreciation Mortgage (SAM) contracts influence financial stability and risk sharing?
- ▶ **Approach**: build a GE model of mortgage and housing market with explicit financial sector that intermediates between borrowers and savers.
 - Start from realistic mortgage debt contracts: long-term, nominal, prepayable, defaultable
 - Consider different forms of mortgage payment indexation (SAMs)
- ▶ **Policy conclusion**: only carefully designed mortgage indexation leads to aggregate stability and risk-sharing benefits.
 - Commonly proposed features like asymmetric and interest-only adjustment have important macro consequences.

Related Literature

- Asset pricing models with financial intermediaries:
 - Brunnermeier + Sannikov 14, 15, 17, Gârleanu + Pedersen 11, Gertler + Karadi 11,
 He + Krishnamurthy 12, 13, 15, Adrian + Boyarchenko 12, Savov + Moreira 16
 - Contribution: split banks and borrowers, risk sharing with multiple contract types
- Quantitative macro models of mortgage markets:
 - Favilukis, Ludvigson, Van Nieuwerburgh 17, Corbae + Quintin 14, Elenev,
 Landvoigt, Van Nieuwerburgh 16, Landvoigt 15, Garriga, Kydland, Sustek 15,
 Greenwald 16, Wong 15
 - Contribution: realistic mortgages and intermediation in GE
- ► Alternative mortgage contracts/SAMs:
 - Eberly + Krishnamurthy 14, Hall 15, Kung 15, Mian 13, Mian + Sufi 14, Piskorski + Tchistyi 17, Guren, Krishnamurthy, McQuade 17
 - Contribution: effect on risk sharing, housing/mortgage markets with levered intermediaries

MODEL

Model Overview

Model Ingredients

Borrowers:

- Choose whether to exercise default option.
- Realistic long-term mortgages, endogenous refinancing.

Financial intermediaries/banks:

- Choose mortgage origination volume and leverage.
- Can default: bailouts financed by taxpayers (deposit insurance).
- Face capital requirements (moral hazard).

Depositors:

- Final investors with preference for safe assets.
- Do not participate in risky asset markets.

- Demographics
 - Three types of agents: Borrowers, Depositors, Intermediaries
 - Population mass χ_j for $j \in \{B, D, I\}$
 - Perfect consumption insurance within, but not across types (aggregation).
- Endowments
- Preferences
- ► Inflation

- Demographics
- Endowments
 - Non-durable endowment, income shock:

$$\log Y_{t} = (1 - \rho_{y}) \log \bar{Y} + \rho_{y} \log Y_{t-1} + \sigma_{y} \varepsilon_{y,t}, \quad \varepsilon_{y,t} \sim N(0,1)$$

- Agent j ∈ {B, D, I} receives share s_j of Y_t , taxed at rate τ .
- Housing tree provides services in fixed supply $(\bar{K} = H_t^B + H_t^D + H_t^I)$.
- Preferences
- ▶ Inflation

- Demographics
- Endowments
- Preferences
 - Epstein-Zin:

$$U_{t}^{j} = \left\{ (1 - \beta_{j}) \left(u_{t}^{j} \right)^{1 - 1/\psi} + \beta_{j} \left(\mathbb{E}_{t} \left[\left(U_{t+1}^{j} \right)^{1 - \gamma_{j}} \right] \right)^{\frac{1 - 1/\psi}{1 - \gamma_{j}}} \right\}^{\frac{1}{1 - 1/\psi}}$$

$$u_{t}^{j} = (C_{t}^{j})^{1 - \xi_{t}} (H_{t}^{j})^{\xi_{t}}$$

- Borrowers, intermediaries more impatient: $\beta_b = \beta_i < \beta_d$
- Fixed intermediary/depositor housing demand: $H_t^I = \bar{K}^I$, $H_t^D = \bar{K}^D$.
- Housing demand shock ξ_t .
- ▶ Inflation

- Demographics
- **▶** Endowments
- Preferences
- Inflation
 - Nominal contracts, constant inflation rate $\bar{\pi}$

Mortgage Contract: Basics

- lacktriangle Mortgages are geometric perpetuities with duration parameter δ
- **Example:** borrow face amount M_0 at rate r_0^* at t = 0
 - Each period, pay off 1δ of principal, $M_{t+1} = \delta M_t$.
- Promised repayments to lender:

t	1	2	3	
Principal (M_t)	$(1-\delta)\cdot M_0$	$(1-\delta)\cdot\delta M_0$	$(1-\delta)\cdot\delta^2M_0$	
Interest (A_t)	$r_0^* \cdot M_0$	$r_0^* \cdot \delta M_0$	$r_0^* \cdot \delta^2 M_0$	

Payments are tax deductible for borrower.

Mortgage Contract: Basics

- lacktriangle Mortgages are geometric perpetuities with duration parameter δ
- **Example:** borrow face amount M_0 at rate r_0^* at t = 0
 - Each period, pay off 1δ of principal, $M_{t+1} = \delta M_t$.
- Promised repayments to lender:

t	1	2	3	
Principal (M_t)	$(1-\delta)\cdot M_0$	$(1-\delta)\cdot\delta M_0$	$(1-\delta)\cdot\delta^2M_0$	
Interest (A_t)	$r_0^* \cdot M_0$	$r_0^* \cdot \delta M_0$	$r_0^* \cdot \delta^2 M_0$	

Payments are tax deductible for borrower.

Mortgage Contract: Overview

- ▶ State variables: principal balance (M_t^B) , promised interest payment (A_t^B) , borrower-owned housing (K_t^B) .
- Transition laws (start simple and build up):

$$egin{align} M^B_{t+1} &= ar{\pi}^{-1} & \left[& M^*_t + & \delta M^B_t
ight] \ A^B_{t+1} &= ar{\pi}^{-1} & \left[& r^*_t M^*_t + & \delta A^B_t
ight] \ K^B_{t+1} &= & K^B_t \ \end{pmatrix} \end{array}$$

Mortgages: Refinancing

- lacktriangle Mortgages are geometric perpetuities with duration parameter δ
- ▶ Realistic prepayment option allows separate tracking of outstanding principal balance (M_t^B) and promised interest payment (A_t^B)
 - Effective interest rate on old debt: $r_t^B = A_t^B/M_t^B$
- Refinancing and new house purchases
 - Indiv. borrowers draw iid transaction costs for refi $\kappa_{i,t} \sim \Gamma_{\kappa}(\kappa)$
 - Optimal policy: fraction $Z_{R,t} = \Gamma_{\kappa}(\bar{\kappa}_t)$ refinance
 - Refinancers choose new mortgage balance M_t^* and house of size K_t^* , subject to LTV constraint $M_t^* \le \phi^K p_t K_t^*$ at origination (only).

Mortgages: Refinancing

- lacktriangle Mortgages are geometric perpetuities with duration parameter δ
- ▶ Realistic prepayment option allows separate tracking of outstanding principal balance (M_t^B) and promised interest payment (A_t^B)
 - Effective interest rate on old debt: $r_t^B = A_t^B/M_t^B$
- Refinancing and new house purchases
 - Indiv. borrowers draw iid transaction costs for refi $\kappa_{i,t} \sim \Gamma_{\kappa}(\kappa)$
 - Optimal policy: fraction $Z_{R,t} = \Gamma_{\kappa}(\bar{\kappa}_t)$ refinance
 - Refinancers choose new mortgage balance M_t^* and house of size K_t^* , subject to LTV constraint $M_t^* \leq \phi^K p_t K_t^*$ at origination (only).

Mortgage Contract: Overview

- ▶ State variables: principal balance (M_t^B) , promised interest payment (A_t^B) , borrower-owned housing (K_t^B) .
- Transition laws:

$$\begin{split} M^B_{t+1} &= \bar{\pi}^{-1} & \left[Z_{R,t} & M^*_t + \delta (1 - Z_{R,t}) & M^B_t \right] \\ A^B_{t+1} &= \bar{\pi}^{-1} & \left[Z_{R,t} & r^*_t M^*_t + \delta (1 - Z_{R,t}) & A^B_t \right] \\ K^B_{t+1} &= Z_{R,t} & K^*_t + (1 - Z_{R,t}) & K^B_t \end{split}$$

1. Costly debt refinancing at endog. rate $Z_{R,t}$.

Mortgages: Defaults

- ► At start of t, all borrowers have housing capital K_t^B , debt (M_t^B, A_t^B)
- ▶ Draw idiosyncratic/local home valuation shock $\omega_{i,t} \stackrel{iid}{\sim} \Gamma_{\omega,t}$.
 - Split into local (insurable) component ($\omega_{i,t}^L$), and uninsurable individual component ($\omega_{i,t}^U$):

$$\begin{split} \log \omega_{i,t} &= \log \omega_{i,t}^L + \log \omega_{i,t}^U \\ \log \omega_{i,t}^j &= (1 - \rho_\omega) \mu_j + \rho_\omega \log \omega_{i,t-1}^j + \varepsilon_t^j, \qquad j \in \{L, U\} \end{split}$$

- Constant local share of variation (α), time-varying XS variance:

$$\operatorname{Var}_t(\log \omega_{i,t}^L) = \alpha \sigma_{\omega,t}^2$$
 $\operatorname{Var}_t(\log \omega_{i,t}^U) = (1 - \alpha)\sigma_{\omega,t}^2$

- ▶ Borrowers with $\omega_{i,t}^U < \bar{\omega}_t^U$ optimally default. Banks seize housing capital and erase debt of defaulting borrowers.
 - Default rate: $\mathbf{Z}_{D,t} = \Gamma^{U}_{\omega,t}(\bar{\omega}^{U}_{t}).$
 - Frac. housing retained: $Z_{K,t} = \int_{\omega_{i,t}^U > \bar{\omega}_i^U} \omega_{i,t}^U d\Gamma_{\omega,t}^U$.

Mortgages: Defaults

- ▶ At start of t, all borrowers have housing capital K_t^B , debt (M_t^B, A_t^B)
- ▶ Draw idiosyncratic/local home valuation shock $\omega_{i,t} \stackrel{iid}{\sim} \Gamma_{\omega,t}$.
 - Split into local (insurable) component ($\omega_{i,t}^L$), and uninsurable individual component ($\omega_{i,t}^U$):

$$\begin{split} \log \omega_{i,t} &= \log \omega_{i,t}^L + \log \omega_{i,t}^U \\ \log \omega_{i,t}^j &= (1 - \rho_\omega) \mu_j + \rho_\omega \log \omega_{i,t-1}^j + \varepsilon_t^j, \qquad j \in \{L, U\} \end{split}$$

- Constant local share of variation (α), time-varying XS variance:

$$\operatorname{Var}_{t}(\log \omega_{i,t}^{L}) = \alpha \sigma_{\omega,t}^{2}$$
 $\operatorname{Var}_{t}(\log \omega_{i,t}^{U}) = (1 - \alpha)\sigma_{\omega,t}^{2}$

- ▶ Borrowers with $\omega_{i,t}^{U} < \bar{\omega}_{t}^{U}$ optimally default. Banks seize housing capital and erase debt of defaulting borrowers.
 - Default rate: $\mathbf{Z}_{D,t} = \Gamma^{U}_{\omega,t}(\bar{\omega}^{U}_{t}).$
 - Frac. housing retained: $\mathbf{Z}_{\mathit{K},\mathit{t}} = \int_{\omega_{i,t}^{\mathit{U}} > \bar{\omega}_{t}^{\mathit{U}}} \omega_{i,t}^{\mathit{U}} \, d\Gamma_{\omega,t}^{\mathit{U}}.$

Mortgage Contract: Overview

- ▶ State variables: principal balance (M_t^B) , promised interest payment (A_t^B) , borrower-owned housing (K_t^B) .
- ► Transition laws:

$$\begin{split} M^B_{t+1} &= \bar{\pi}^{-1} & \left[Z_{R,t} (1 - Z_{D,t}) M^*_t + \delta (1 - Z_{R,t}) (1 - Z_{D,t}) M^B_t \right] \\ A^B_{t+1} &= \bar{\pi}^{-1} & \left[Z_{R,t} (1 - Z_{D,t}) r^*_t M^*_t + \delta (1 - Z_{R,t}) (1 - Z_{D,t}) A^B_t \right] \\ K^B_{t+1} &= Z_{R,t} (1 - Z_{D,t}) K^*_t + (1 - Z_{R,t}) Z_{K,t} K^B_t \end{split}$$

- 1. Costly debt renewal at endog. rate $Z_{R,t}$.
- 2. Default and foreclosure at endog. rate $Z_{D,t}$.

Indexation: Basics

- ▶ Define a borrower's initial leverage as $\lambda = M/p\omega K$, where p is national house price, and ω is relative value of individual house.
- ▶ Housing wealth hit by two forces that shift leverage:

$$p\omega K \rightarrow \left(\frac{p'}{p}\right) \cdot \left(\frac{\omega'}{\omega}\right) \cdot p\omega K, \qquad \lambda' = \left(\frac{1}{p'/p}\right) \cdot \left(\frac{1}{\omega'/\omega}\right) \lambda$$

for idiosyncratic shock ω .

▶ Indexation scales mortgage debt, dampening shocks to leverage:

$$M \to \zeta_p \cdot \zeta_\omega \cdot M,$$
 $\lambda' = \left(\frac{\zeta_p}{p'/p}\right) \cdot \left(\frac{\zeta_\omega}{\omega'/\omega}\right) \lambda$

► Full indexation ($\zeta_p = p'/p$, $\zeta_\omega = \omega'/\omega$) implies $\lambda' = \lambda$.

Indexation: Implementation

▶ SAM: index by scaling both principal balance and payment

1. Aggregate:
$$\zeta_{p,t} = \left(\frac{p_t}{p_{t-1}}\right)$$

2. Individual/local:
$$\zeta_{\omega}(\omega_{i,t}) = \left(\frac{\omega_{i,t}^L}{\omega_{i,t-1}^L}\right)$$

► Transition laws:

$$\begin{split} M^B_{t+1} &= \bar{\pi}^{-1} & \left[Z_{R,t} (1 - Z_{D,t}) M^*_t + \delta (1 - Z_{R,t}) (1 - Z_{D,t}) M^B_t \right] \\ A^B_{t+1} &= \bar{\pi}^{-1} & \left[Z_{R,t} (1 - Z_{D,t}) r^*_t M^*_t + \delta (1 - Z_{R,t}) (1 - Z_{D,t}) A^B_t \right] \\ K^B_{t+1} &= Z_{R,t} (1 - Z_{D,t}) K^*_t + (1 - Z_{R,t}) Z_{K,t} K^B_t \end{split}$$

▶ Default threshold ("Q" terms are average continuation values/costs):

$$\bar{\omega}_{i,t}^{U} = \frac{1}{\omega_{i,t}^{L}} \cdot \frac{Q_{A,t}A_{t} + Q_{M,t}M_{t}}{Q_{K,t}K_{t}^{B}}$$

Indexation: Implementation

▶ SAM: index by scaling both principal balance and payment

1. Aggregate:
$$\zeta_{p,t} = \left(\frac{p_t}{p_{t-1}}\right)$$

2. Individual/local:
$$\zeta_{\omega}(\omega_{i,t}) = \left(\frac{\omega_{i,t}^L}{\omega_{i,t-1}^L}\right)$$

► Transition laws:

$$\begin{split} M^B_{t+1} &= \bar{\pi}^{-1} \zeta_{p,t+1} \left[Z_{R,t} (1 - Z_{D,t}) M^*_t + \delta (1 - Z_{R,t}) (1 - Z_{D,t}) M^B_t \right] \\ A^B_{t+1} &= \bar{\pi}^{-1} \zeta_{p,t+1} \left[Z_{R,t} (1 - Z_{D,t}) r^*_t M^*_t + \delta (1 - Z_{R,t}) (1 - Z_{D,t}) A^B_t \right] \\ K^B_{t+1} &= Z_{R,t} (1 - Z_{D,t}) K^*_t + (1 - Z_{R,t}) Z_{K,t} K^B_t \end{split}$$

▶ Default threshold ("Q" terms are average continuation values/costs):

$$\bar{\omega}_{i,t}^{U} = \frac{1}{\omega_{i,t}^{L}} \cdot \frac{Q_{A,t}A_{t} + Q_{M,t}M_{t}}{Q_{K,t}K_{t}^{B}}$$

Indexation: Implementation

- SAM: index by scaling both principal balance and payment
 - 1. Aggregate: $\zeta_{p,t} = \left(\frac{p_t}{p_{t-1}}\right)$
 - 2. Individual/local: $\zeta_{\omega}(\omega_{i,t}) = \left(\frac{\omega_{i,t}^L}{\omega_{i,t-1}^L}\right)$
- ► Transition laws:

$$\begin{split} M^B_{t+1} &= \bar{\pi}^{-1} \zeta_{p,t+1} \left[Z_{R,t} (1 - Z_{D,t}) M^*_t + \delta (1 - Z_{R,t}) (1 - Z_{D,t}) M^B_t \right] \\ A^B_{t+1} &= \bar{\pi}^{-1} \zeta_{p,t+1} \left[Z_{R,t} (1 - Z_{D,t}) r^*_t M^*_t + \delta (1 - Z_{R,t}) (1 - Z_{D,t}) A^B_t \right] \\ K^B_{t+1} &= Z_{R,t} (1 - Z_{D,t}) K^*_t + (1 - Z_{R,t}) Z_{K,t} K^B_t \end{split}$$

▶ Default threshold ("Q" terms are average continuation values/costs):

$$\bar{\omega}_{i,t}^{U} = \frac{(\omega_{i,t}^{L})^{\iota_{\omega}}}{\omega_{i,t}^{L}} \cdot \frac{Q_{A,t}A_{t} + Q_{M,t}M_{t}}{Q_{K,t}K_{t}^{B}}$$

Borrowers

- Perfect sharing of nondurable consumption and housing services risk within borrower family \implies aggregation.
- ▶ Rep. borrower chooses consumption (C_t^B, H_t^B) , new mortgage balances M_t^* and assoc. houses K_t^* , refinancing rate $Z_{R,t}$, and default rate $Z_{D,t}$ to maximize V_t^B , subject to laws of motion, budget constraint

$$C_{t}^{B} = \underbrace{(1-\tau)Y_{t}^{B}}_{\text{disp. income}} + \underbrace{Z_{R,t}\left(Z_{N,t}M_{t}^{*} - \delta Z_{A,t}M_{t}^{B}\right)}_{\text{net new borrowing}} - \underbrace{(1-\delta)Z_{A,t}M_{t}^{B}}_{\text{principal payment}} - \underbrace{(1-\tau)Z_{A,t}A_{t}^{B}}_{\text{interest payment}} - \underbrace{p_{t}\left[Z_{R,t}Z_{N,t}K_{t}^{*} + \left(\nu^{K} - Z_{R,t}\right)Z_{K,t}K_{t}^{B}\right]}_{\text{owned housing}} - \underbrace{\rho_{t}\left(H_{t}^{B} - K_{t}^{B}\right) - \underbrace{\left(\Psi(Z_{R,t}) - \bar{\Psi}_{t}\right)Z_{N,t}M_{t}^{*}}_{\text{net transaction costs}} - \underbrace{T_{t}^{B}}_{\text{lump sum taxes}}$$

and loan-to-value constraint on **new** borrowing: $M_t^* \leq \phi^K p_t K_t^*$

- Intermediary sector consists of banks, REO firms, and households
- Intermediary households receive endowment income and hold equity of banks and REO firms
- Banks maximize SHV, pay dividends to intermediary households
- Enjoy limited liability and deposit insurance
- Subject to regulatory capital requirement
- ▶ **REO** firms maximize SHV, pay dividends to intermediary households

- Intermediary sector consists of banks, REO firms, and households
- Intermediary households receive endowment income and hold equity of banks and REO firms
- Banks maximize SHV, pay dividends to intermediary households
 - Issue new loans to borrowers
 - Take deposits from depositors
 - Seize foreclosed properties and sell to REO firms at price $p_t^{REO} < p_t$
 - Trade mortgages on the secondary market (IO + PO strips)
- Enjoy limited liability and deposit insurance
- Subject to regulatory capital requirement
- ▶ REO firms maximize SHV, pay dividends to intermediary households

- Intermediary sector consists of banks, REO firms, and households
- Intermediary households receive endowment income and hold equity of banks and REO firms
- ▶ Banks maximize SHV, pay dividends to intermediary households
- Enjoy limited liability and deposit insurance
 - Receive idiosyncratic profit shocks and optimally default
 - Government assumes all assets and liabilities of defaulting banks
 - Fraction η of bankrupt banks' assets are DWL to society
- Subject to regulatory capital requirement
- ▶ **REO** firms maximize SHV, pay dividends to intermediary households

- ▶ Intermediary sector consists of **banks**, **REO firms**, and **households**
- Intermediary households receive endowment income and hold equity of banks and REO firms
- ▶ Banks maximize SHV, pay dividends to intermediary households
- Enjoy limited liability and deposit insurance
- Subject to regulatory capital requirement

deposits $\leq \phi^{I}(MV \text{ of mortgage securities})$

REO firms maximize SHV, pay dividends to intermediary households

Complete Problem

- Intermediary sector consists of banks, REO firms, and households
- Intermediary households receive endowment income and hold equity of banks and REO firms
- ▶ Banks maximize SHV, pay dividends to intermediary households
- Enjoy limited liability and deposit insurance
- Subject to regulatory capital requirement
- ▶ **REO firms** maximize SHV, pay dividends to intermediary households
 - Buy foreclosed houses from banks
 - Maintain REO housing stock ($v^{REO} > v$)
 - Rent current REO stock to borrowers
 - Slowly sell REO properties back to borrowers

Depositors and Government

Depositors:

- More patient than borrowers and intermediaries
- Only invest in deposits

Government:

▶ Discretionary spending: $G_t = \tau \underbrace{\left(Y_t - Z_{A,t} A_t^B\right)}_{\text{income net of interest}}$

 Funds deposit shortfall of failing banks through lump-sum taxation, proportional to population shares

$$T_t^j = \chi_j \cdot \text{bailout}_t$$

Equilibrium

- Given prices and parameters, three households, banks, and REO firms maximize their value functions subject to budget and borrowing constraints
- Markets clear
 - New mortgages (→ mortgage rate)
 - Secondary mortgage market (→ mortgage bond price)
 - ► Housing purchases (→ house price)
 - ightharpoonup REO purchases (\rightarrow REO house price)
 - ► Housing services (→ rental rate)
 - ▶ Deposits and government debt (→ riskfree rate)
- Resource constraint

$$Y_t = CONS_t + GOV_t + \underbrace{v^K p_t(\bar{K} - K_t^{REO})}_{\text{regular housing maint.}} + \underbrace{v^{REO} p_t K_t^{REO}}_{\text{REO housing maint.}} + \underbrace{DWL_t}_{\text{bank failures}}$$

State Variables and Solution Method

- Exogenous states
 - Persistent aggregate income Y_t
 - Persistent disp. of idio. housing (**uncertainty**) shock: $\sigma_{\omega,t}$ (by regime)
 - Persistent housing (**demand**) shock: ξ_t (by regime)
- Five endogenous states: housing stock, mortgage principal, mortgage payments, deposits, intermediary wealth
 - Wealth distribution matters for asset prices due to incomplete markets
 - Intermediary wealth is a key state variable
- Nonlinear global solution method: policy time iteration
 - Occasionally binding intermediary constraint
 - Risk premia have important implications for welfare results
 - Non-linear dynamics when intermediaries are constrained

State Variables and Solution Method

- Exogenous states
 - Persistent aggregate income Y_t
 - Persistent disp. of idio. housing (**uncertainty**) shock: $\sigma_{\omega,t}$ (by regime)
 - Persistent housing (**demand**) shock: ξ_t (by regime)
- ► Five endogenous states: housing stock, mortgage principal, mortgage payments, deposits, intermediary wealth
 - Wealth distribution matters for asset prices due to incomplete markets
 - Intermediary wealth is a key state variable
- Nonlinear global solution method: policy time iteration
 - Occasionally binding intermediary constraint
 - Risk premia have important implications for welfare results
 - Non-linear dynamics when intermediaries are constrained

State Variables and Solution Method

- Exogenous states
 - Persistent aggregate **income** *Y*_t
 - Persistent disp. of idio. housing (uncertainty) shock: $\sigma_{\omega,t}$ (by regime)
 - Persistent housing (**demand**) shock: ξ_t (by regime)
- ► Five endogenous states: housing stock, mortgage principal, mortgage payments, deposits, intermediary wealth
 - Wealth distribution matters for asset prices due to incomplete markets
 - Intermediary wealth is a key state variable
- ▶ Nonlinear global solution method: policy time iteration
 - Occasionally binding intermediary constraint
 - Risk premia have important implications for welfare results
 - Non-linear dynamics when intermediaries are constrained

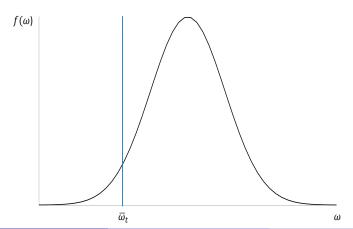
- Quarterly calibration targeting sample 1991.Q1 2016.Q1
 - 1. Demographics (pop., income) from 1998 SCF
 - "Borrower" is mortgagor with LTV \geq 30% (hold 89% of debt).
 - Intermediary income based on FIRE sector.
 - Housing shares = income shares.
 - Exogenous shocks
 - 3. Mortgage debt: realistic calibration of prepayment and credit risk
 - 4. Banks: match average FDIC bank failure rate, receivership costs
 - 5. Preferences: EZ utility with EIS

- Quarterly calibration targeting sample 1991.Q1 2016.Q1
 - 1. Demographics (pop., income) from 1998 SCF
 - 2. Exogenous shocks
 - **Income**: AR(1), match detrended labor income persistence, vol.
 - Uncertainty: two regimes, transition probs match fraction of time in foreclosure crisis, vols to match conditional default rates.
 - Housing demand: same two regimes, match average expenditure share, house price vol.
 - Mortgage debt: realistic calibration of prepayment and credit risk
 - 4. Banks: match average FDIC bank failure rate, receivership costs
 - 5. Preferences: EZ utility with EIS 1

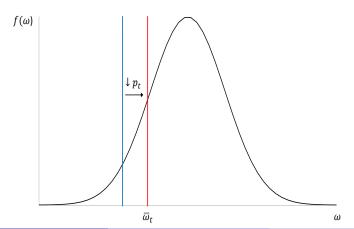
- Quarterly calibration targeting sample 1991.Q1 2016.Q1
 - 1. Demographics (pop., income) from 1998 SCF
 - 2. Exogenous shocks
 - 3. Mortgage debt: realistic calibration of prepayment and credit risk
 - Choose refi cost parameters following Greenwald (2018)
 - Max LTV at origination 85%
 - REO maint. ν^{REO} to match loss given default on mortgages of 40%
 - 4. Banks: match average FDIC bank failure rate, receivership costs
 - 5. Preferences: EZ utility with EIS 1

- Quarterly calibration targeting sample 1991.Q1 2016.Q1
 - 1. Demographics (pop., income) from 1998 SCF
 - 2. Exogenous shocks
 - 3. Mortgage debt: realistic calibration of prepayment and credit risk
 - 4. Banks: match average FDIC bank failure rate, receivership costs
 - 5. Preferences: EZ utility with EIS 1

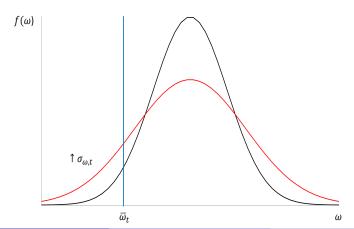
► All parameters


- Quarterly calibration targeting sample 1991.Q1 2016.Q1
 - 1. Demographics (pop., income) from 1998 SCF
 - 2. Exogenous shocks
 - 3. Mortgage debt: realistic calibration of prepayment and credit risk
 - 4. Banks: match average FDIC bank failure rate, receivership costs
 - 5. Preferences: EZ utility with EIS 1
 - $\beta_B = \beta_I = 0.95$: match borrower VTI
 - $\beta_S = 0.998$: mean r^f of 3% (ann.)
 - $\gamma = 5$: standard value

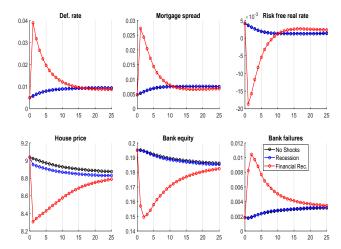
RESULTS


Financial Recession Experiment

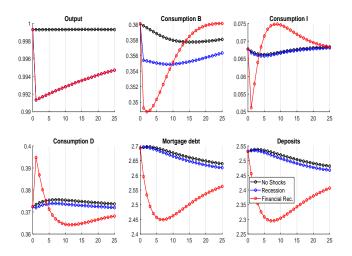
- Two sources of house price risk for lenders
 - 1. Fall in aggregate house price p_t (housing utility shock).
 - 2. Increase in cross-sectional dispersion ("uncertainty") $\sigma_{\omega,t}$


Financial Recession Experiment

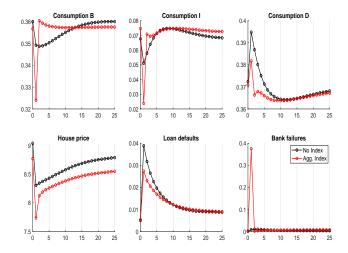
- Two sources of house price risk for lenders
 - 1. Fall in aggregate house price p_t (housing utility shock).
 - 2. Increase in cross-sectional dispersion ("uncertainty") $\sigma_{\omega,i}$


Financial Recession Experiment

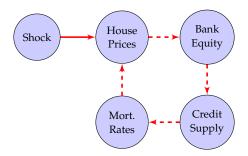
- Two sources of house price risk for lenders
 - 1. Fall in aggregate house price p_t (housing utility shock).
 - 2. Increase in cross-sectional dispersion ("uncertainty") $\sigma_{\omega,t}$


Financial Recession: Prices and Defaults

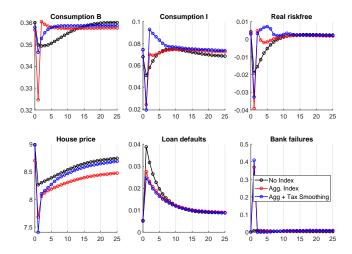
- Drop in house prices and short rate, spreads + defaults up.
- Sharp reduction in bank equity and spike in bank failures


Financial Recession: Allocations

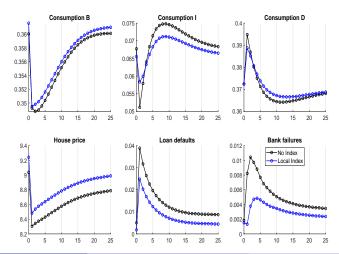
▶ Consumption shifts from $B, I \rightarrow D$ as financial sector contracts.


Aggregate Indexation: Financial Fragility

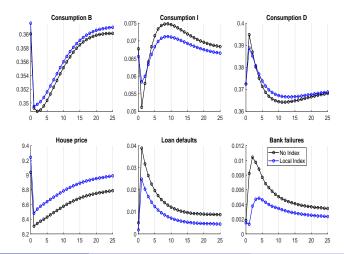
- Comparison: baseline vs. full aggregate indexation $(\zeta_p = p'/p)$
- ► Foreclosures ↓ (indiscriminate debt relief), bank failures ↑↑.


Financial Fragility: Mechanism

- ▶ Capital requirements: bank losses ⇒ credit contraction.
- ▶ Feedback: larger losses \implies higher rates \implies lower house prices.
- ► Traditional mortgage: no forced delevering ⇒ much less feedback.


Aggregate Indexation: Financial Fragility

- ightharpoonup Immediate financing of bailouts \implies sharp consumption drops.
- ▶ Would tax smoothing help? No! Gov't debt crowds out deposits.


Local Indexation: Financial Stability

- Comparison: baseline vs. full local indexation $(\zeta_{\omega} = \omega_L'/\omega_L)$
- Local share of variance (α): 25%.

Local Indexation: Financial Stability

- ► Foreclosures ↓↓ (targeted debt relief)
- ▶ Bank failures ↓↓, financial fragility reduced

- ► **Regional** model: aggregate + local indexation.
- ▶ Defaults: no indexation > agg. indexation >> local indexation.

	No Index	Aggregate	Local Only	Regional
Mortgage default rate	0.95%	0.92%	0.49%	0.47%
Bank equity ratio	7.09%	7.33%	7.13%	7.25%
Fraction leverage constr. binds	99.35%	90.16%	99.90%	90.92%
Bank failure rate	0.33%	0.84%	0.22%	0.50%
Mortgage rate	1.46%	1.54%	1.30%	1.35%
Risk-free rate	0.71%	0.66%	0.74%	0.75%
Mortgage excess return	0.34%	0.49%	0.35%	0.40%
House price	8.842	8.595	9.042	8.784
Mortgage debt	259.59%	252.53%	274.88%	267.74%
Deposits	2.454	2.381	2.599	2.526

- Agg. indexation: extra capital insufficient against higher risk.
- Local indexation: reduced defaults prevent bank failures.

	No Index	Aggregate	Local Only	Regional
Mortgage default rate	0.95%	0.92%	0.49%	0.47%
Bank equity ratio	7.09%	7.33%	7.13%	7.25%
Fraction leverage constr. binds	99.35%	90.16%	99.90%	90.92%
Bank failure rate	0.33%	0.84%	0.22%	0.50%
Mortgage rate	1.46%	1.54%	1.30%	1.35%
Risk-free rate	0.71%	0.66%	0.74%	0.75%
Mortgage excess return	0.34%	0.49%	0.35%	0.40%
House price	8.842	8.595	9.042	8.784
Mortgage debt	259.59%	252.53%	274.88%	267.74%
Deposits	2.454	2.381	2.599	2.526

- ► Higher financial fragility ⇒ higher spreads, profits.
- ► Smaller financial sector + precautionary saving pushes $r^f \downarrow$.

	No Index	Aggregate	Local Only	Regional
Mortgage default rate	0.95%	0.92%	0.49%	0.47%
Bank equity ratio	7.09%	7.33%	7.13%	7.25%
Fraction leverage constr. binds	99.35%	90.16%	99.90%	90.92%
Bank failure rate	0.33%	0.84%	0.22%	0.50%
Mortgage rate	1.46%	1.54%	1.30%	1.35%
Risk-free rate	0.71%	0.66%	0.74%	0.75%
Mortgage excess return	0.34%	0.49%	0.35%	0.40%
House price	8.842	8.595	9.042	8.784
Mortgage debt	259.59%	252.53%	274.88%	267.74%
Deposits	2.454	2.381	2.599	2.526

- ▶ Lower risk/rates \implies higher house prices \implies debt, deposits \uparrow .
- ▶ Reduced risk under local indexation despite higher debt loads.

	No Index	Aggregate	Local Only	Regional
Mortgage default rate	0.95%	0.92%	0.49%	0.47%
Bank equity ratio	7.09%	7.33%	7.13%	7.25%
Fraction leverage constr. binds	99.35%	90.16%	99.90%	90.92%
Bank failure rate	0.33%	0.84%	0.22%	0.50%
Mortgage rate	1.46%	1.54%	1.30%	1.35%
Risk-free rate	0.71%	0.66%	0.74%	0.75%
Mortgage excess return	0.34%	0.49%	0.35%	0.40%
House price	8.842	8.595	9.042	8.784
Mortgage debt	259.59%	252.53%	274.88%	267.74%
Deposits	2.454	2.381	2.599	2.526

- Regional model (agg. + local) has lowest default rates.
- ▶ But gives up many of the Local Only stability gains.

	No Index	Aggregate	Local Only	Regional
Mortgage default rate	0.95%	0.92%	0.49%	0.47%
Bank equity ratio	7.09%	7.33%	7.13%	7.25%
Fraction leverage constr. binds	99.35%	90.16%	99.90%	90.92%
Bank failure rate	0.33%	0.84%	0.22%	0.50%
Mortgage rate	1.46%	1.54%	1.30%	1.35%
Risk-free rate	0.71%	0.66%	0.74%	0.75%
Mortgage excess return	0.34%	0.49%	0.35%	0.40%
House price	8.842	8.595	9.042	8.784
Mortgage debt	259.59%	252.53%	274.88%	267.74%
Deposits	2.454	2.381	2.599	2.526

▶ Agg. indexation: borrowers lose, intermediaries gain!

	No Index	Aggregate	Local Only	Regional
Aggregate welfare	0.821	+0.17%	+0.06%	+0.32%
Value function, B	0.379	-0.57%	+0.43%	+0.27%
Value function, D	0.374	-0.07%	+0.07%	+0.47%
Value function, I	0.068	+5.66%	-2.11%	-0.21%
Consumption, B	0.359	-0.3%	+0.3%	+0.1%
Consumption, D	0.372	-0.6%	+0.1%	+0.3%
Consumption, I	0.068	+6.1%	-2.9%	-0.4%
Consumption gr vol, B	0.42%	+351.3%	+15.9%	+189.0%
Consumption gr vol, D	1.11%	-10.4%	-26.5%	-15.4%
Consumption gr vol, I	4.47%	+392.9%	-54.1%	+282.5%
Wealth gr vol, I	0.035	+1366.8%	-1.8%	+679.3%
log (MU B / MU D) vol	0.025	-4.6%	-10.4%	-21.5%
log (MU B / MU I) vol	0.061	+145.7%	-36.8%	+101.8%

▶ Higher spreads, bailouts ⇒ higher intermediary consumption.

	No Index	Aggregate	Local Only	Regional
Aggregate welfare	0.821	+0.17%	+0.06%	+0.32%
Value function, B	0.379	-0.57%	+0.43%	+0.27%
Value function, D	0.374	-0.07%	+0.07%	+0.47%
Value function, I	0.068	+5.66%	-2.11%	-0.21%
Consumption, B	0.359	-0.3%	+0.3%	+0.1%
Consumption, D	0.372	-0.6%	+0.1%	+0.3%
Consumption, I	0.068	+6.1%	-2.9%	-0.4%
Consumption gr vol, B	0.42%	+351.3%	+15.9%	+189.0%
Consumption gr vol, D	1.11%	-10.4%	-26.5%	-15.4%
Consumption gr vol, I	4.47%	+392.9%	-54.1%	+282.5%
Wealth gr vol, I	0.035	+1366.8%	-1.8%	+679.3%
log (MU B / MU D) vol	0.025	-4.6%	-10.4%	-21.5%
log (MU B / MU I) vol	0.061	+145.7%	-36.8%	+101.8%

▶ Agg. indexation sharply increases consumption vol for *B*, *I*.

	No Index	Aggregate	Local Only	Regional
Aggregate welfare	0.821	+0.17%	+0.06%	+0.32%
Value function, B	0.379	-0.57%	+0.43%	+0.27%
Value function, D	0.374	-0.07%	+0.07%	+0.47%
Value function, I	0.068	+5.66%	-2.11%	-0.21%
Consumption, B	0.359	-0.3%	+0.3%	+0.1%
Consumption, D	0.372	-0.6%	+0.1%	+0.3%
Consumption, I	0.068	+6.1%	-2.9%	-0.4%
Consumption gr vol, B	0.42%	+351.3%	+15.9%	+189.0%
Consumption gr vol, D	1.11%	-10.4%	-26.5%	-15.4%
Consumption gr vol, I	4.47%	+392.9%	-54.1%	+282.5%
Wealth gr vol, I	0.035	+1366.8%	-1.8%	+679.3%
log (MU B / MU D) vol	0.025	-4.6%	-10.4%	-21.5%
log (MU B / MU I) vol	0.061	+145.7%	-36.8%	+101.8%

▶ Improved risk sharing under local indexation.

	No Index	Aggregate	Local Only	Regional
Aggregate welfare	0.821	+0.17%	+0.06%	+0.32%
Value function, B	0.379	-0.57%	+0.43%	+0.27%
Value function, D	0.374	-0.07%	+0.07%	+0.47%
Value function, I	0.068	+5.66%	-2.11%	-0.21%
Consumption, B	0.359	-0.3%	+0.3%	+0.1%
Consumption, D	0.372	-0.6%	+0.1%	+0.3%
Consumption, I	0.068	+6.1%	-2.9%	-0.4%
Consumption gr vol, B	0.42%	+351.3%	+15.9%	+189.0%
Consumption gr vol, D	1.11%	-10.4%	-26.5%	-15.4%
Consumption gr vol, I	4.47%	+392.9%	-54.1%	+282.5%
Wealth gr vol, I	0.035	+1366.8%	-1.8%	+679.3%
log (MU B / MU D) vol	0.025	-4.6%	-10.4%	-21.5%
log (MU B / MU I) vol	0.061	+145.7%	-36.8%	+101.8%

Comparison: Interest vs. Principal Indexation

- ▶ Some proposals envision only indexing interest payments
- Ganong + Noel (17): principal reductions ineffective in HAMP

	No Index	Regional	Regional IO	Regional PO
Mortgage default rate	0.95%	0.47%	0.80%	0.49%
Bank failure rate	0.33%	0.50%	0.30%	0.31%
Refi Rate	3.84%	3.74%	3.84%	3.76%
Mortgage rate	1.46%	1.35%	1.41%	1.32%
Mortgage excess return	0.34%	0.40%	0.35%	0.38%
House price	8.842	8.784	8.806	8.900
Mortgage debt	259.59%	267.74%	261.60%	270.80%
Household leverage	64.41%	65.80%	65.09%	65.63%
Deposits	2.454	2.526	2.484	2.553
Consumption, B	0.359	+0.1%	+0.1%	+0.3%
Consumption, I	0.068	-0.4%	-1.1%	-1.7%

Comparison: Interest vs. Principal Indexation

- Interest-only indexation has much more modest impact on defaults.
- ▶ Why? Interest payments only matter until next refi.

	No Index	Regional	Regional IO	Regional PO
Mortgage default rate	0.95%	0.47%	0.80%	0.49%
Bank failure rate	0.33%	0.50%	0.30%	0.31%
Refi Rate	3.84%	3.74%	3.84%	3.76%
Mortgage rate	1.46%	1.35%	1.41%	1.32%
Mortgage excess return	0.34%	0.40%	0.35%	0.38%
House price	8.842	8.784	8.806	8.900
Mortgage debt	259.59%	267.74%	261.60%	270.80%
Household leverage	64.41%	65.80%	65.09%	65.63%
Deposits	2.454	2.526	2.484	2.553
Consumption, B	0.359	+0.1%	+0.1%	+0.3%
Consumption, I	0.068	-0.4%	-1.1%	-1.7%

- Many SAM proposals are asymmetric, only adjust downward.
- Our implementation: index mortgages by $min(\zeta, 1)$.

	No Index	Regional	Reg. Asym.	Reg. Asym. IO
Mortgage default rate	0.95%	0.47%	0.12%	0.55%
Bank failure rate	0.33%	0.50%	0.94%	0.34%
Refi Rate	3.84%	3.74%	4.42%	3.56%
Mortgage rate	1.46%	1.35%	2.37%	1.56%
Mortgage excess return	0.34%	0.40%	0.49%	0.35%
House price	8.842	8.784	8.488	8.663
Mortgage debt	259.59%	267.74%	231.85%	260.24%
Household leverage	64.41%	65.80%	58.35%	62.85%
Deposits	2.454	2.526	2.196	2.373
Consumption, B	0.359	+0.1%	+1.9%	+0.5%
Consumption, I	0.068	-0.4%	-1.6%	-2.9%

- ► Financial fragility ↑↑.
- High ω dispersion causes losses in crash.

	No Index	Regional	Reg. Asym.	Reg. Asym. IO
Mortgage default rate	0.95%	0.47%	0.12%	0.55%
Bank failure rate	0.33%	0.50%	0.94%	0.34%
Refi Rate	3.84%	3.74%	4.42%	3.56%
Mortgage rate	1.46%	1.35%	2.37%	1.56%
Mortgage excess return	0.34%	0.40%	0.49%	0.35%
House price	8.842	8.784	8.488	8.663
Mortgage debt	259.59%	267.74%	231.85%	260.24%
Household leverage	64.41%	65.80%	58.35%	62.85%
Deposits	2.454	2.526	2.196	2.373
Consumption, B	0.359	+0.1%	+1.9%	+0.5%
Consumption, I	0.068	-0.4%	-1.6%	-2.9%

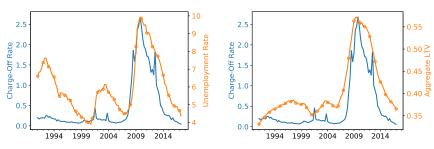
- ► House prices, mortgage debt, deposits ↓↓. Mortgage rates ↑↑.
- ▶ Forgiveness \simeq shorter maturity. Lower leverage means defaults $\downarrow \downarrow$.

	No Index	Regional	Reg. Asym.	Reg. Asym. IO
Mortgage default rate	0.95%	0.47%	0.12%	0.55%
Bank failure rate	0.33%	0.50%	0.94%	0.34%
Refi Rate	3.84%	3.74%	4.42%	3.56%
Mortgage rate	1.46%	1.35%	2.37%	1.56%
Mortgage excess return	0.34%	0.40%	0.49%	0.35%
House price	8.842	8.784	8.488	8.663
Mortgage debt	259.59%	267.74%	231.85%	260.24%
Household leverage	64.41%	65.80%	58.35%	62.85%
Deposits	2.454	2.526	2.196	2.373
Consumption, B	0.359	+0.1%	+1.9%	+0.5%
Consumption, I	0.068	-0.4%	-1.6%	-2.9%

- Asym-IO: same effects (lower leverage) but more moderate.
- ▶ Interesting twist: interest forgiveness reduces incentives to refi.

	No Index	Regional	Reg. Asym.	Reg. Asym. IO
Mortgage default rate	0.95%	0.47%	0.12%	0.55%
Bank failure rate	0.33%	0.50%	0.94%	0.34%
Refi Rate	3.84%	3.74%	4.42%	3.56%
Mortgage rate	1.46%	1.35%	2.37%	1.56%
Mortgage excess return	0.34%	0.40%	0.49%	0.35%
House price	8.842	8.784	8.488	8.663
Mortgage debt	259.59%	267.74%	231.85%	260.24%
Household leverage	64.41%	65.80%	58.35%	62.85%
Deposits	2.454	2.526	2.196	2.373
Consumption, B	0.359	+0.1%	+1.9%	+0.5%
Consumption, I	0.068	-0.4%	-1.6%	-2.9%

- ► Asym-IO lowers defaults with little fragility. But need indexation?
- ▶ Political economy obstacle: intermediaries hate it.


	No Index	Regional	Reg. Asym.	Reg. Asym. IO
Mortgage default rate	0.95%	0.47%	0.12%	0.55%
Bank failure rate	0.33%	0.50%	0.94%	0.34%
Refi Rate	3.84%	3.74%	4.42%	3.56%
Mortgage rate	1.46%	1.35%	2.37%	1.56%
Mortgage excess return	0.34%	0.40%	0.49%	0.35%
House price	8.842	8.784	8.488	8.663
Mortgage debt	259.59%	267.74%	231.85%	260.24%
Household leverage	64.41%	65.80%	58.35%	62.85%
Deposits	2.454	2.526	2.196	2.373
Consumption, B	0.359	+0.1%	+1.9%	+0.5%
Consumption, I	0.068	-0.4%	-1.6%	-2.9%

Conclusion

- General equilibrium model of intermediated mortgage market allowing for indexed mortgage contracts.
- Effect depends on type of indexation:
 - Aggregate indexation: amplifies intermediary sector instability.
 - Local indexation: dampens intermediary sector instability.
- Costs of indexation partly born by taxpayer
- Nature of indexation matters for macro implications
 - Indexing principal more effective than interest.
 - Asymmetric indexation has potent effects, but largely through leverage.
 - Misalignment between bank, social incentives may be major obstacle.

Strategic vs. Liquidity Defaults

- Liquidity shocks only turn into defaults when borrower is underwater (double trigger).
- Reducing principal burden may be most effective way to prevent liquidity defaults.

(a) Charge-Offs vs. Unemp.

(b) Charge-Offs vs. LTV

Incorporating Liquidity Defaults

- Our implementation: receive liquidity shock with probability θ , need to leave house.
 - If home equity is positive, sell.
 - If home equity is negative, default.
- Add utility cost of default to reduce number of strategic defaults.
- ▶ Results with over 50% liquidity defaults nearly identical to baseline.

Equilibrium: Details

Optimizing allocation and price vector $(r_t^*, q_t^A, q_t^M, q_t^f, p_t, p_t^{REO}, \rho_t)$ such that markets clear:

New mortgages:
$$Z_{R,t}Z_{N,t}M_t^* = L_t^*$$

PO strips:
$$\tilde{M}_t^I = \hat{M}_t^I$$

IO strips:
$$\tilde{A}_t^I = \hat{A}_t^I$$

Deposits:
$$B_{t+1}^I = B_{t+1}^D$$

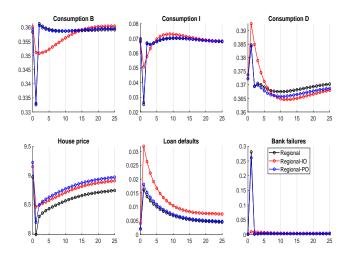
Housing Purchases:
$$Z_{R,t}Z_{N,t}K_t^* = S^{REO}K_t^{REO} + Z_{R,t}Z_{K,t}K_t^B$$

REO Purchases:
$$I_t^{REO} = (1 - Z_{K,t})K_t^B$$

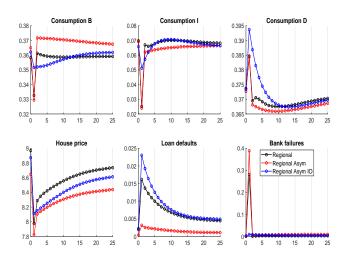
Housing Services:
$$H_t^B = K_t^B + K_t^{REO} = \bar{K}^B$$

Resources:
$$Y_t = C_t^B + C_t^I + C_t^D + G_t + \eta \delta(1 - Z_{R,t}) Z_{A,t} \left(q_t^A A_t^I + q_t^M M_t^I \right)$$

DWL from bank failures


$$+ \nu^{K} p_{t} (Z_{K,t} K_{t}^{B} + \bar{K}^{I} + \bar{K}^{D}) + \nu^{REO} p_{t} \left[K_{t}^{REO} + (1 - Z_{K,t}) K_{t}^{B} \right]$$

housing maintenance expenditure


Interest vs. Principal Indexation

Comparison: regional indexation vs. regional interest-only indexation vs. regional principal-only indexation.

Asymmetric Indexation

Asymmetric indexation: cap upward indexation at 20% for each component.

Transition Comparison: Asymmetric Contracts

▶ Black: response on impact. Blue: steady state response.

	No Index	Regional	Reg. Asym.	Reg. Asym. IO
Welfare	0.821	+0.61% (+0.32%)	+0.90% (+0.73%)	+0.28% (+0.25%)
V^B	0.379	+0.68% (+0.27%)	+1.76% (+1.85%)	+0.36% (+0.53%)
V^D	0.374	+0.54% (+0.47%)	+0.11% (+0.07%)	+0.47% (+0.37%)
V^I	0.068	+0.53% (-0.21%)	+0.51% (-1.91%)	-1.25% (-2.02%)
C^B	0.359	+0.50% (+0.08%)	-1.00% (+1.92%)	-0.18% (+0.51%)
C^D	0.372	+0.82% (+0.26%)	+0.47% (+0.05%)	+2.42% (+0.44%)
C^{I}	0.068	+4.63% (-0.40%)	+18.26% (-1.65%)	+0.35% (-2.88%)
Deposits	2.454	+5.98% (+2.90%)	-8.34% (-10.52%)	+3.79% (-3.31%)
p	8.842	+2.30% (-0.66%)	-2.11% (-4.01%)	+0.73% (-2.03%)
M^B	2.596	+4.76% (+3.14%)	+4.76% (-10.69%)	+4.76% (+0.25%)
r^*	1.46%	-0.04pp (-0.11pp)	+0.80pp (+0.91pp)	+0.06pp (+0.09pp)
Refi Rate	3.84%	-0.00pp (-0.09pp)	-0.82pp (+0.59pp)	-0.15pp (-0.27pp)
Loss Rate	0.40%	-0.33pp (- <mark>0.20</mark> pp)	+0.42pp (+0.51pp)	-0.11pp (-0.05pp)
Failures	0.33%	-0.24pp (+0.16pp)	-0.29pp (+0.60pp)	-0.20pp (+0.01pp)

Transition Comparison: Interest vs. Principal

▶ Black: response on impact. Blue: steady state response.

	No Index	Regional	Regional IO	Regional PO
Welfare	0.821	+0.61% (+0.32%)	+0.36% (+0.20%)	+0.51% (+0.18%)
V^B	0.379	+0.68% (+0.27%)	+0.61% (+0.30%)	+0.83% (+0.33%)
V^D	0.374	+0.54% (+0.47%)	+0.34% (+0.25%)	+0.28% (+0.21%)
V^I	0.068	+0.53% (-0.21%)	-0.95% (-0.61%)	-0.03% (-0.75%)
C^B	0.359	+0.50% (+0.08%)	+0.78% (+0.11%)	+1.11% (+0.29%)
C^D	0.372	+0.82% (+0.26%)	+1.49% (+0.28%)	+0.32% (+0.17%)
C^{I}	0.068	+4.63% (-0.40%)	-1.09% (-1.07%)	+3.00% (-1.65%)
Deposits	2.454	+5.98% (+2.90%)	+5.84% (+1.20%)	+6.52% (+4.02%)
p	8.842	+2.30% (-0.66%)	+2.58% (-0.40%)	+3.55% (+0.66%)
M^B	2.596	+4.76% (+3.14%)	+4.76% (+0.77%)	+4.76% (+4.32%)
r^*	1.46%	-0.04pp (-0.11pp)	-0.05pp (-0.05pp)	-0.07pp (-0.14pp)
Refi Rate	3.84%	-0.00pp (-0.09pp)	+0.07pp (+0.01pp)	+0.10pp (-0.08pp)
Loss Rate	0.40%	-0.33pp (- <mark>0.20</mark> pp)	-0.24pp (-0.08pp)	-0.33pp (- <mark>0.20</mark> pp)
Failures	0.33%	-0.24pp (+0.16pp)	-0.19pp (-0.03pp)	-0.21pp (-0.02pp)

Borrower Complete Problem •Back

$$\max_{C_{t}^{B},H_{t}^{B},M_{t}^{*},K_{t}^{*},Z_{D,t},Z_{R,t}} \quad V^{B}(K_{t}^{B},A_{t}^{B},M_{t}^{B})$$

subject to

$$C_{t}^{B} = \underbrace{(1 - \tau_{t})Y_{t}^{B}}_{\text{income}} + \underbrace{Z_{R,t}\left((1 - Z_{D,t})M_{t}^{*} - \delta Z_{M,t}M_{t}^{B}\right)}_{\text{net new borrowing}} - \underbrace{(1 - \delta)Z_{M,t}M_{t}^{B}}_{\text{principal payment}} - \underbrace{(1 - \tau)Z_{M,t}A_{t}^{B}}_{\text{interest payment}} - \underbrace{p_{t}\left[Z_{R,t}(1 - Z_{D,t})K_{t}^{*} + \left(\nu^{K} - Z_{R,t}\right)Z_{K,t}K_{t}^{B}\right]}_{\text{owned housing}} - \underbrace{\rho_{t}\left(H_{t}^{B} - K_{t}^{B}\right) - \left(\Psi(Z_{R,t}) - \overline{\Psi}_{t}\right)(1 - Z_{D,t})M_{t}^{*} - \underbrace{T_{t}^{B}}_{\text{lump-sum taxes}}$$

and

$$\begin{split} M^B_{t+1} &= \bar{\pi}^{-1} \zeta_{p,t+1} \Big[Z_{R,t} (1 - Z_{D,t}) M^*_t + \delta (1 - Z_{R,t}) Z_{M,t} M^B_t \Big] \\ A^B_{t+1} &= \bar{\pi}^{-1} \zeta_{p,t+1} \Big[Z_{R,t} (1 - Z_{D,t}) r^*_t M^*_t + \delta (1 - Z_{R,t}) Z_{M,t} A^B_t \Big] \\ K^B_{t+1} &= Z_{R,t} (1 - Z_{D,t}) K^*_t + (1 - Z_{R,t}) Z_{K,t} K^B_t \\ M^*_t &< \phi^K p_t K^*_t \end{split}$$

Bank Complete Problem • Back

$$\begin{split} V^I(W_t^I, \mathcal{S}_t^I) &= \max_{L_t^*, \tilde{M}_t^I, \tilde{\mathcal{A}}_t^I, B_{t+1}^I} W_t^I - J_t^I \\ &+ \operatorname{E}_t \left[\Lambda_{t,t+1}^I \, F_\epsilon^I \left(V^I(W_{t+1}^I, \mathcal{S}_{t+1}^I) \right) \left(V^I(W_{t+1}^I, \mathcal{S}_{t+1}^I) - \epsilon_{t+1}^{I,-} \right) \right] \end{split}$$

subject to

$$\begin{split} B_{t+1}^I &\leq \phi^I \left(q_t^A \tilde{A}_t^I + q_t^M \tilde{M}_t^I \right) \\ J_t^I &= \underbrace{\left(1 - r_t^* q_t^A - q_t^M \right) L_t^* + \underbrace{q_t^A \tilde{A}_t^I}_{IO \text{ strips}} + \underbrace{q_t^M \tilde{M}_t^I}_{PO \text{ strips}} - \underbrace{q_t^f B_{t+1}^I}_{\text{new deposits}} \\ W_{t+1}^I &= \underbrace{\left[X_{t+1} + Z_{A,t+1} \left((1 - \delta) + \delta Z_{R,t+1} \right) \right] M_{t+1}^I + Z_{A,t+1} A_{t+1}^I}_{\text{payments on existing debt}} \\ &+ \underbrace{\delta \left(1 - Z_{R,t+1} \right) Z_{A,t+1} \left(q_{t+1}^A A_{t+1}^I + q_{t+1}^M M_{t+1}^I \right) - \underbrace{\pi_{t+1}^{-1} B_{t+1}^I}_{\text{deposit redemptions}} \end{split}$$

where
$$X_t = \frac{(1-Z_{K,t})K_t^B(p_t^{REO}-\nu^{REO}p_t)}{M^B}$$

Calibration: All Parameters Back

Parameter	Name	Value	Target/Source
Agg. income persistence	ρ_{TFP}	0.977	Real per capita labor income BEA
Agg. income st. dev.	σ_{TFP}	0.008	Real per capita labor income BEA
Housing st. dev. (Normal)	$\bar{\sigma}_{\omega,L}$	0.200	Mortg. delinq. rate US banks, no crisis
Housing st. dev. (Crisis)	$\bar{\sigma}_{\omega,H}$	0.250	Mortg. delinq. rate US banks, crisis
Profit shock st. dev.	σ_{ϵ}	0.070	FDIC bank failure rate
Fraction of borrowers	χ_B	0.343	SCF 1998 population share LTV>.30
Fraction of intermediaries	χ_I	0.020	Stock market cap. share of finance sector
Borr. inc. and housing share	s_B	0.470	SCF 1998 income share LTV>.30
Intermediary inc. and housing share	s_I	0.067	Employment share in finance
Tax rate	τ	0.147	Personal tax rate BEA
Housing stock	Κ	1	Normalization
Inflation rate	$\bar{\pi}$	1.006	2.29% CPI inflation
Mortgage duration	δ	0.996	Duration of 30-yr FRM
Prepayment cost mean	μ_{κ}	0.370	Greenwald (2018)
Prepayment cost scale	S_K	0.152	Greenwald (2018)
LTV limit	ϕ^{K}	0.850	LTV at origination
Maint. cost (owner)	ν^{K}	0.006	BEA Fixed Asset Tables
Bank regulatory capital limit	ϕ^I	0.940	Financial sector leverage
Deadweight cost of bank failures	ζ	0.085	Bank receivership expense rate
Maint. cost (REO)	v^{REO}	0.024	REO discount: $p_{ss}^{REO}/p_{ss} = 0.725$
REO sale rate	S^{REO}	0.167	Length of foreclosure crisis
Borr. discount factor	β_B	0.950	Borrower debt/value, SCF
Intermediary discount factor	β_I	0.950	Equal to β_B
Depositor discount factor	β_D	0.998	2% real rate
Risk aversion	γ	5.000	Standard value
EIS	ψ	1.000	Standard value
Housing preference	ξ	0.220	Borrower value/income, SCF