Managing a Housing Boom

Jason Allen¹ Daniel Greenwald²

¹Bank of Canada

²MIT Sloan

AEA Annual Meeting January, 2022

Disclaimer: Views presented are the authors' and not those of the Bank of Canada.

Motivation

- Canada undergoing sustained housing boom.
- Below: Value-to-Income (VTI) ratios in Canada and US.

Motivation

- Canadian policymakers have been actively using macroprudential tools.
- Ex: 2016 policy tightened payment-to-income (PTI) limits by over 16%.

Motivation

- ► Good laboratory for theory (Justiniano et al. 2015, Greenwald 2018).
- Predict that tight PTI limits should be highly effective at dampening boom.

This Paper

- > Main question: how can macroprudential policy effectively control a housing boom?
- Approach: develop a GE model with main policy tools (LTV, PTI limits) and a key institutional feature: segmented submarkets.
 - Government Insured market: low down payments, tight PTI.
 - Uninsured market: high down payments, loose PTI.
 - Not specific to Canada (e.g., FHA vs. Fannie/Freddie in the US housing boom).

Main insights:

- 1. Multi-market structure allows for larger housing booms due to market switching.
- 2. Substitution between markets dampens effectiveness of PTI policy.
- 3. Effects of LTV (down payment) policy depend crucially on which submarket is targeted.

Institutional Background

Credit Limits

Two credit limits applied at origination in submarket j:

- 1. Loan-to-Value (LTV) limit: $m \leq \theta_i^{LTV} p^h h$.
- 2. Payment-to-Income (PTI) limit: $qm \le \theta_i^{PTI}y$, where q is coupon (interest + principal).
- Two submarkets:
 - 1. Insured Market: loose LTV limit ($\theta_l^{LTV} = 95\%$), tight PTI limit ($\theta_l^{PTI} = 44\%$).
 - 2. **Uninsured Market:** tight LTV limit ($\theta_U^{LTV} = 80\%$), tight PTI limit ($\theta_U^{PTI} \sim \infty$).

Constraint Structure by Submarket

Constraint space:

		~			
Allon	and	(-ro	ani	M 3 1	17
AUCH	anu	ULE	CIN	wai	

Constraint Structure by Submarket

Data equivalent:

Model(s)

Simple Model

> One-time house purchase with quasi-linear preferences. Borrower maximizes

where $\bar{m}(h)$ is debt limit and $\mu > 0$ represents marginal value of credit.

Marginal benefit and cost

 $MB(h) = \alpha h^{-1}$ $MC(h) = 1 - \mu \bar{m}'(h)$

- Note: MC < 1 when $\mu > 0$ and **debt limit is increasing in** *h*.
- $\bar{m}'(h) > 0$ when LTV-constrained ($\bar{m} \propto h$), not when PTI-constrained ($\bar{m} \propto y$).

Extension of Greenwald (2018) allowing for multiple submarkets.

- Borrowing ⇒ impatient borrowers/patient savers.
- Realistic mortgages \implies long-term, fixed-rate, renew with prob. ρ .
- ▶ Endogenous interest rates, output, inflation ⇒ labor supply, sticky prices, Taylor rule.

- Extension of Greenwald (2018) allowing for multiple submarkets.
- Borrowing ⇒ impatient borrowers/patient savers.

- Preferences:
$$V_{j,t} = \log(c_{j,t}/\chi_j) + \xi \log(h_{j,t}/\chi_j) - \eta_j \frac{(n_{j,t}/\chi_j)^{1+\varphi}}{1+\varphi} + \beta_j \mathbb{E}_t V_{j,t+1}$$

- Mortgage debt \implies durable housing.
- Realistic mortgages \implies long-term, fixed-rate, renew with prob. ρ .
- ▶ Endogenous interest rates, output, inflation ⇒ labor supply, sticky prices, Taylor rule.

- Extension of Greenwald (2018) allowing for multiple submarkets.
- Borrowing ⇒ impatient borrowers/patient savers.
- Mortgage debt \implies durable housing.
 - Divisible, cannot change stock without renewing mortgage.
- Realistic mortgages \implies long-term, fixed-rate, renew with prob. ρ .
- Endogenous interest rates, output, inflation \implies labor supply, sticky prices, Taylor rule.

- Extension of Greenwald (2018) allowing for multiple submarkets.
- Borrowing ⇒ impatient borrowers/patient savers.
- Mortgage debt durable housing.
- Realistic mortgages \implies long-term, fixed-rate, renew with prob. ρ .
 - At renewal, update balance and interest rate.
 - LTV + PTI limits imposed at origination only.
 - Borrowers choose submarket that gives them bigger loan.

Endogenous interest rates, output, inflation \implies labor supply, sticky prices, Taylor rule.

- Extension of Greenwald (2018) allowing for multiple submarkets.
- Borrowing ⇒ impatient borrowers/patient savers.
- Mortgage debt durable housing.
- ▶ Realistic mortgages \implies long-term, fixed-rate, renew with prob. ρ .
- ► Endogenous interest rates, output, inflation ⇒ labor supply, sticky prices, Taylor rule.

Representative borrower housing optimality condition:

$$p_t^h = \frac{u_{b,t}^h/u_{b,t}^c + \mathbb{E}_t\left\{\Lambda_{b,t+1}p_{t+1}^h\left[1 - \delta - (1-\rho)\mathcal{C}_{t+1}\right]\right\}}{1 - \mathcal{C}_t}$$

▶ C_t is population average of $\mu_t \bar{m}'_t(p^h h)$, generalization of simple example.

- Unconstrained borrowers: $\mathcal{C}_t = \mu_t = 0$, p_t^h = PV of implied rents
- Single market, LTV constraint: $C_t = \mu_t \theta^{LTV}$
- Single market, LTV and PTI constraints: $C_t = \mu_t F_t^{LTV} \theta^{LTV}$
- Dual market, LTV and PTI constraints: $C_t = \mu_t \left(F_{U,t}^{LTV} \theta_U^{LTV} + F_{I,t}^{LTV} \theta_I^{LTV} \right)$
- Housing demand increases when more borrowers are LTV-constrained at the margin.
 - Uninsured PTI limits are loose \implies increase in uninsured share can boost house prices.

Results

Simple Model: Baseline

- Insured Market: debt limit increasing with slope 0.95 until PTI limit reached.
- Uninsured Market: debt limit increasing with slope 0.8 indefinitely.
- Overall limit is upper envelope. Borrower switches market at green line in Panel (b).

Simple Model: Baseline

- For housing demand, compare marginal benefit to marginal cost $(1 \mu \bar{m}'(h))$.
- Single market: switch to PTI-constrained causes discrete drop in $\overline{m}'(h)$, jump in MC.
- Many borrowers have MC = MB at point where both constraints bind (Greenwald, 2018).

Simple Model: Baseline

- ▶ Dual market: $\bar{m}'(h)$ ↑ when borrowers switch to **Uninsured**, becoming LTV-constrained.
- Causes marginal cost to drop, allowing for two intersections with MB (local optima).
- > This parameterization: lower (Insured) optimum is higher.

Simple Model: Housing Boom

- Now consider boom scenario with increased housing preference (α). Shifts MB curve up.
- Because of discontinuous jump in MC, lower (Insured) local optimum unchanged.
- In single market setting, this implies that PTI limits can dampen housing demand in booms.

Simple Model: Housing Boom

- Dual market: ranking of local optima can flip, borrowers switch to Uninsured market.
- Causes large increase in housing demand and loan size.
- Implies PTI limits less effective at dampening booms in dual market setting.

Full Model: Housing Boom

- Generate boom using anticipated increase in housing utility.
 - Compare Benchmark to economies with only insured or uninsured sectors.
- With two markets, substitution allows for much higher house price and credit growth.
 - Closer to world with all uninsured than all insured, even though > 80% insured in steady state.

Allen and Greenwald

Aside: Parallel with US Boom/Bust

- Below: share of loans securitized by Ginnie Mae (FHA + VA).
 - Like Insured sector. Low down payments (3.5%) + strict income reqs.
- Below: huge substitution away from FHA + VA during housing boom.

Source: HMDA

Allen and Greenwald

Simple Model: Change in PTI Limit

- > Tightening PTI limit reduces maximum Insured loan size and pushes switch point left.
- > Dual market: substitution into Uninsured occurs earlier, mitigates credit tightening.

Simple Model: Change in PTI Limit

- Single market: MC now jumps at lower value, pushes housing demand down.
- Implies tightening PTI is effective macroprudential policy to dampen housing demand.

Simple Model: Change in PTI Limit

- > Dual market: reduces NPVs in **Insured** sector, leading borrowers to switch to **Uninsured**.
- Market switchers increase housing and debt demand, weakening effects of policy.

Full Model: Change in PTI Limit

- October 2016: new rule that PTI ratios must be evaluated at "posted" rate (\sim 200bp higher).
- Effectively 16.5% tightening of PTI limit in Insured market only
- Compare benchmark to economy with single (insured) market.

Full Model: Change in PTI Limit

- Single market (No Uninsured) economy: large decrease in house prices and debt.
- Dual market environment cuts effect of policy by more than half.
- Large substitution out toward Uninsured market boosts housing demand and credit.

• Tight θ_1^{LTV} reduces debt limits, moving constraint switching point right.

(a) By Submarket ($\theta_I^{LTV} \downarrow$)

(b) Overall ($\theta_I^{LTV} \downarrow$)

- Single market: shift in MC jump to the right can increase housing demand.
- Implies LTV tightening is less effective policy for dampening house price growth.

- Dual market: basically the same effect.
- > LTV limits are even tighter in **Uninsured** market, so outside option not relevant.

 \blacktriangleright Borrowers unable to evade tightening by switching markets \implies substantial effect on debt.

(b) Overall ($\theta_I^{LTV} \downarrow$)

- In contrast, tightening Uninsured LTV limit can cause borrowers to switch to Insured.
- ▶ If so, dramatically reduce housing demand. Potentially effective way to dampen HP growth.

- But switch largely occurs along flat (PTI-constrained) part of the overall debt limit.
- Overall: tight $\theta_U^{LTV} \implies$ large effect on housing demand, small effect on debt.

(a) By Submarket ($\theta_I^{LTV} \downarrow$)

(b) Overall ($\theta_I^{LTV} \downarrow$)

Full Model: Shock to LTV Limits

- Full model: reduce each LTV limit by 10ppt (Insured: $95\% \rightarrow 85\%$, Uninsured: $80\% \rightarrow 70\%$).
- **Low LTV (I)**: large effect on debt, almost no impact on house prices.
- **Low LTV (U)**: large effect on prices, 4x smaller impact on debt.

Conclusion

- GE model with key macroprudential tools and segmented submarkets.
- Dual markets allow larger booms holding debt limit ratios fixed.
 - Borrowers switch into Uninsured market.
 - Collateral incentives (low MC) lead to high housing demand.
- Dual market weakens effectiveness of PTI policy.
 - Single market: sharply reduces housing and credit demand.
 - Dual market: borrowers switching to **Uninsured** market can **increase** demand.
- Effects of LTV tightening depend on targeted submarket:
 - Insured: large reduction in debt, little effect on house prices.
 - Uninsured: smaller decline in debt, large fall in house prices.

Simple Model: Tight PTI (U)

Text here.

