Quantitative Tightening

Vadim Elenev Johns Hopkins Carey Miguel Faria-e-Castro FRB St. Louis

Daniel L. Greenwald MIT Sloan

May 2019 — AREUEA National Conference

The views expressed on this paper do not necessarily reflect the positions of the Federal Reserve Bank of St. Louis or the Federal Reserve System.

Motivation

Monetary policy normalization in the US

- Interest rate lift-off (conventional)
- Balance sheet unwinding (unconventional)

We ask:

- How do they interact?
- When, which, and how much?
- What if there is a new crisis?
- What if there are political constraints?

We study these questions by doing the following:

- Model of (un)conventional monetary policy
 - 1. TANK w/ rich mortgage setting
 - 2. Endogenous refinancing decisions and mortgage duration
 - 3. Crisis = worsening of issuance frictions
- Quantitative analysis of normalization scenarios
 - 1. Early unwinding
 - 2. Late unwinding
 - 3. New crisis in 2019Q2
 - 4. QE4 and institutional constraints

Trade-off: fragility vs. redistribution

Unwinding <u>later</u>

- Enables policy-fueled temporary housing and consumption boom
- All fine (for borrowers) if there is no new crisis
- Political constraints more likely to bind \Rightarrow crisis might be worse

Unwinding earlier

- Has only mild short-run costs
- Provides "room" for QE4

Precautionary benefits of unwinding soon after exiting ZLB.

Model

- Discrete time $t = 0, 1, \dots$
- Impatient borrowers j = b, patient savers j = s
- Borrowers take out realistic mortgages
- Savers issue mortgages subject to frictions
- Preferences over numeraire, housing, labor

$$\mathcal{U}_t^j = \mathbb{E}_t \sum_{k=0}^\infty \beta_j^t \left[\log C_{t+k}^j + \xi \log H_{t-1+k}^j - \eta_j \frac{(N_{t+k}^j)^{1+\varphi}}{1+\varphi} \right]$$

- Long-term fixed-rate nominal mortgage w/ costly prepayment
 - Mortgage consists of two payment streams
 - Principal u, (1u)
 u, $(1u)^2
 u$, \dots \implies stock denoted by m_t
 - Interest r^* , $(1u)r^*$, $(1u)^2r^*$, \ldots \implies stock denoted by x_t
 - Mortgages can be prepaid at par, extinguishing both streams
- Endogenous prepayment with time-varying incentives
- New (and only new) mortgages subject to LTV constraint

Borrower Problem

Borrowers take out realistic mortgages

- Long-term fixed-rate nominal mortgage w/ costly prepayment
- Endogenous prepayment with time-varying incentives
 - Family Construct: continuum of members $i \in [0, 1]$ in borrower hh
 - •
 - Prepaying allows member *i* to (i) optimize over house size h^{*}_t, (ii) optimize over mortgage size m^{*}_t, (iii) reset interest rate r^{*}_t
 - subject to iid cost $\kappa_{i,t} \sim \Gamma$ (rebated lump-sum back to borrowers)
 - Guess and verify optimal threshold policy: refinance when $\kappa_{i,t} < \kappa_t^*$
 - \implies endogenous prepayment rate ρ_t

$$\rho_t \equiv \Gamma(\kappa_t^*) = F(\overrightarrow{\text{rate incentive}_t}, \overrightarrow{\text{cash-out motive}_t})$$

New (and only new) mortgages subject to LTV constraint

- \bullet Long-term fixed-rate nominal mortgage w/ costly prepayment
- Endogenous prepayment with time-varying incentives
- New (and only new) mortgages subject to LTV constraint

Borrower Problem

Savers originate mortgages subject to frictions

- New mortgages ℓ_t^* tranched: ℓ_t^* of **PO strips**, $r_t^* \ell_t^*$ of **IO strips**
- Origination + securitization subject to a cost (rebated lump-sum)

$$\Psi_t^{\mathcal{S}}(\ell_t^*) = \frac{\eta_{m,t}}{1+\psi^m} \left(\frac{\ell_t^*}{\ell_{ss}^*}\right)^{1+\psi^m}, \qquad \eta_{m,t} \sim \mathsf{AR}(1)$$

- Saver assets:
 - 1. PO strips m_t^s traded at price q_t^m with payoff

$$Z_t^m = \underbrace{\nu}_{\text{sched. principal}} + \underbrace{(1-\nu)\rho_t}_{\text{unsched. principal}} + \underbrace{(1-\nu)(1-\rho_t)q_t^m}_{\text{value of future payments}}$$

2. IO strips x_t^s traded at price q_t^a with payoff

3. One-period nominal treasury debt b_t^s at price q_t , payoff equal to 1

• Savers otherwise identical to the rep agent in a standard NK model.

- Continuum of intermediate producers
 - Linear production function $Y_t = A_t N_t$
 - Rotemberg price rigidity \Rightarrow standard New Keynesian Phillips Curve
- Consolidated government budget constraint

$$T_t + q_t B_t^G + \text{Net QE Income}_t = G + \Pi_t^{-1} B_{t-1}^G$$

• Lump-sum taxes adjust to balance budget

$$T_t = \bar{T} \left(\frac{B_t^G}{\bar{B}_t^G} \right)^{\phi_T}$$

Conventional: Taylor Rule subject to the ZLB

$$\frac{1}{q_t} = \max\left\{0, \left[\frac{1}{q_{t-1}}\right]^{\rho_i} \left[\frac{1}{\bar{q}} \left(\frac{\Pi_t}{\bar{\Pi}}\right)^{\phi_\pi} \left(\frac{Y_t}{\bar{Y}}\right)^{\phi_y}\right]^{1-\rho_i} mp_t\right\}$$

Unconventional MP: Fed buys fraction f_t^{QE} of newly issued PO & IO

$$m_t^G = f_t^{QE} \ell_t^* + (1 - \nu)(1 - \rho_t) \Pi_t^{-1} m_{t-1}^G$$
$$x_t^G = f_t^{QE} r_t^* \ell_t^* + (1 - \nu)(1 - \rho_t) \Pi_t^{-1} x_{t-1}^G$$

Net income follows

Net QE Income_t =
$$\Pi_t^{-1}(Z_t^m m_{t-1}^G + Z_t^a x_{t-1}^G) - (q_t^m m_t^G + q_t^a x_t^G)$$

Housing: $\chi H_t^B + (1-\chi)\overline{H}^S = 1$ New Originations: $\chi \rho_t m_t^* = \ell_t^* = (1-\chi)\ell_t^{*,S} + f_t^{QE}\ell_t^*$ POs: $(1-\chi)m_t^S + m_t^G = \chi m_t$ IOs: $(1-\chi)x_t^S + x_t^G = \chi x_t$ Treasuries: $(1-\chi)b_t^S = B_t^G$ Labor: $\chi N_t^B + (1-\chi)N_t^s = N_t$ Final goods: $\chi C_t^B + (1-\chi)C_t^S + \delta p_t^h + G = Y_t$

Key Model Mechanisms

The FOC for refinancing can be written as

$$\kappa_t^* = \Omega_t^{\mathsf{x}}(\bar{r}_t - r_t^*) + \mu_t \left[m_t^* - \Pi_t^{-1}(1 - \nu)m_{t-1} \right]$$

where

- $\bar{r}_t = \frac{x_{t-1}}{m_{t-1}}$ is the avg interest rate of outstanding mortgages
- r_t^* is the current (new) mortgage rate
- Ω_t^{\times} is the marginal value of future interest payments
- μ_t is the multiplier on the LTV constraint

Refinancing Incentive_t \simeq Interest incentive_t + Cash-out incentive_t

State Dependent Effects of Monetary Policy

12/21

- $\bullet~\mbox{QE}$ acts by lowering origination + securitization costs
- FOC for originations:

$$q_t^m + q_t^a r_t^* = 1 + \eta_{m,t} \left[\frac{\rho_t m_t^* (1 - f_t^{QE})}{\rho_{ss} m_{ss}^*} \right]^{\psi^m}$$

• QE stabilizes r_t^* , refinancing \uparrow , borrower (current) income \uparrow , GDP \uparrow

Quantitative Analysis: Monetary Policy Normalization

Study nonlinear transitions from state in 2015Q4 s.t.:

- No exogenous shocks from this point onwards
- Interest rate normalization follows Taylor Rule subject to ZLB
- QE normalization follows the September 2017 FOMC instructions
 - 1. Maintenance regime in 2015Q4-2017Q4, purchases are such that

$$m_t^{\rm G}=m_{\rm max}^{\rm G}$$

where m_{max}^{G} is the size of MBS holdings as of 2015Q4

- 2. Reinvestments subject to growing caps from 2017Q3 onwards
- Alternative Scenarios:
 - 1. Early unwinding, reinvestment caps start in 2015Q4
 - 2. Late unwinding, reinvestment caps start in 2020Q3

Policy Normalization Scenarios

16/21

Policy Normalization

Policy Normalization: Unexpected Crisis in 2019Q2

Policy Normalization: QE4 and Political Constraints

	Benchmark	Early Unwinding	Late Unwinding
r_t^*	+1.69pp	+0.64pp	+3.35pp
p_t^h	-8.74%	-3.25%	-16.49%
C_t^B	-3.88%	-1.68%	-8.48%

- Unwinding later: great for borrowers if there is no new crisis
- Political constraints more likely to bind \Rightarrow crisis might be worse
- Unwinding earlier has mild short-run costs, "makes room" for QE4

Early stages! Next steps:

- Further explore feedback between unwinding and refinancing
- How does this affect interaction between conventional and unconventional MP?
- Portfolio composition: unwind MBS vs. treasuries

Appendix

Mortgage Spreads and Issuance Frictions

Relationship between originations and orig. costs changes after crisis.

• Data motivates functional form for issuance costs of the type

 $1 + \mathsf{Cost}_t = \exp\left\{\beta_{t,0} + \beta_{t,1} \log \mathsf{GIR}_t\right\} = \eta_t \mathsf{GIR}_t^{\psi_t}$

- η_t, ψ_t rise during periods of financial stress lacksquare Details on data/analysis
- Embed this relationship in a GE model with realistic mortgages
- QE moderates private GIR, issuance costs
- Reduced-form way of capturing QE effects

Mortgage Spreads and Issuance Frictions

How much of the variation in OPUCs can be explained by mortgage origination?

$$\begin{split} \mathsf{og}\,\mathsf{OPUC}_t &= \beta_{s,0} + \beta_{s,1}\,\mathsf{log}\,\mathsf{GIR}_t + \epsilon_t, \quad s \in \{\mathsf{pre},\mathsf{post}\}\\ \mathsf{GIR}_t &= \frac{\mathsf{Mortgages}_t - (1 - \mathsf{Prepayment}_t) \cdot \mathsf{Mortgages}_{t-1}}{\mathsf{Mortgages}_{t-1}} \end{split}$$

Sample	$\beta_{s,0}$	$\beta_{s,1}$	Adj. R ²	Ν
Pre (to 2008 Q2)	3.183*** (0.185)	0.536*** (0.065)	0.676	58
Post (since 2008 Q3)	6.318*** (0.853)	1.159*** (0.262)	0.517	38

pre is 1994 Q1 - 2008 Q2, post is 2008 Q3 - 2018 Q1 🕩 back

Calibration

Parameter	Description	Value	Target		
	Demographics	and Preferen	ces		
χ	Fraction of borrowers	0.45	Avg share w/ neg fixed income pos, SCF 93-16		
β_s	Discount factor savers	0.9959	Avg level of federal funds rate 2000-2018		
β_b	Discount factor borrowers	0.9829	Value of housing to income of 8.89		
φ	Frisch elasticity	1	Standard		
ξ	Housing preference parameter	0.25	Davis and Ortalo-Magne (2011)		
η_b	Borrower labor disutility	14.13	$N_{t}^{b} = 0.33$		
η_s	Saver labor disutility	8.28	$N_{t}^{s} = 0.33$		
	Produ	uction			
ε	Micro elasticity of substitution across varieties	6	20% markup in SS		
ς	Rotemberg Menu Cost	98.37	Prices adjust once every five quarters		
	Gover	nment			
Ĝ	SS Govt. Spending	$0.2 \times Y$	20% for the US		
Ē₫	SS Govt. Debt	$0.14 \times Y$	Avg. maturity of 20 months, 70% of GDP		
Ē	Trend Inflation	1.020.25	2% for the US		
ϕ_{π}	Taylor rule: Inflation	1.5	Standard		
ϕ_{y}	Taylor rule: Output	0.5/4	Standard		
ρ _i	Taylor rule: Smoothing	0.8	Standard		
ϕ_{τ}	Fiscal Rule	0.01	Faria-e-Castro (2018)		
	Housing an	d Mortgages			
0 ^{LTV}	Maximum LTV at origination	0.80	Max LTV for GSE conforming loans		
ν	Contractual duration of mortgages	0.005	Standard		
δ	Maintenance cost of housing	0.0065	2.5% annual, standard		
Ĥ	Total stock of housing	1	Normalization		
S_{μ}	SD of prepayment shock	0.152	Greenwald (2018)		
μ_{κ}	Mean of prepayment cost shock	0.2902	$\rho_{ss} = 0.0376$		
$\eta_{m,ss}$	Mean financial friction	1.0969	Annual. mortgage spread of 2%		
ϕ_m	Elasticity of Ψ to originations	2.5			
Shock Parameters					
ρa	Persistence of TFP	0.90	Standard		
σ_{a}	SD of TFP Innovations	0.01	Standard		
ρ;	Persistence of nominal rate	0.80	Standard		
ρ,	Persistence of MP Shock	0.80	Standard		
σ,	SD of MP Shock Innovations	0.005	Standard		
POF	Persistence of QE	0.75	Estimated		
σ _{OF}	SD of QE Innovations	1	Normalization		
ρ_n	Persistence of financial shock	0.75			
σ_n	SD of financial shock Innovations	1	Normalization		

- Standard state space methods
- Use Kalman Filter to estimate paths for states 2000Q1-2015Q4
- Four exogenous shocks

$$\{\varepsilon^{a}_{t},\varepsilon^{r}_{t},\varepsilon^{m}_{t},\varepsilon^{QE}_{t}\}_{t=0}^{T}$$

- Four observables
 - 1. (Detrended) PCE consumption
 - 2. 3-month treasury bill rate
 - 3. Share of mortgages owned by the Fed
 - 4. Real mortgage growth

▶ back

Data: Observables

Smoothed Exogenous Processes

Policy Normalization

Policy Normalization: Unexpected Crisis in 2019Q2

Policy Normalization: QE4 and Political Constraints

