Quantitative Tightening

Vadim Elenev
Johns Hopkins Carey

Miguel Faria-e-Castro FRB St. Louis

Daniel L. Greenwald MIT Sloan

May 2019 - AREUEA National Conference
The views expressed on this paper do not necessarily reflect the positions of the Federal Reserve Bank of St. Louis or the Federal Reserve System.

Motivation

Motivation

Monetary policy normalization in the US

- Interest rate lift-off (conventional)
- Balance sheet unwinding (unconventional)

We ask:

- How do they interact?
- When, which, and how much?
- What if there is a new crisis?
- What if there are political constraints?

What we do and how

We study these questions by doing the following:

- Model of (un)conventional monetary policy

1. TANK $w /$ rich mortgage setting
2. Endogenous refinancing decisions and mortgage duration
3. Crisis $=$ worsening of issuance frictions

- Quantitative analysis of normalization scenarios

1. Early unwinding
2. Late unwinding
3. New crisis in 2019Q2
4. QE4 and institutional constraints

Preliminary Results

Trade-off: fragility vs. redistribution

Unwinding later

- Enables policy-fueled temporary housing and consumption boom
- All fine (for borrowers) if there is no new crisis
- Political constraints more likely to bind \Rightarrow crisis might be worse

Unwinding earlier

- Has only mild short-run costs
- Provides "room" for QE4

Precautionary benefits of unwinding soon after exiting ZLB.

Model

Demographics and Preferences

- Discrete time $t=0,1, \ldots$
- Impatient borrowers $j=b$, patient savers $j=s$
- Borrowers take out realistic mortgages
- Savers issue mortgages subject to frictions
- Preferences over numeraire, housing, labor

$$
\mathcal{U}_{t}^{j}=\mathbb{E}_{t} \sum_{k=0}^{\infty} \beta_{j}^{t}\left[\log C_{t+k}^{j}+\xi \log H_{t-1+k}^{j}-\eta_{j} \frac{\left(N_{t+k}^{j}\right)^{1+\varphi}}{1+\varphi}\right]
$$

Borrowers take out realistic mortgages

- Long-term fixed-rate nominal mortgage w/ costly prepayment
- Mortgage consists of two payment streams
- Principal $\nu,(1-\nu) \nu,(1-\nu)^{2} \nu, \ldots \Longrightarrow$ stock denoted by m_{t}
- Interest $r^{*},(1-\nu) r^{*},(1-\nu)^{2} r^{*}, \ldots \Longrightarrow$ stock denoted by x_{t}
- Mortgages can be prepaid at par, extinguishing both streams
- Endogenous prepayment with time-varying incentives
- New (and only new) mortgages subject to LTV constraint

Borrower Problem

Borrowers take out realistic mortgages

- Long-term fixed-rate nominal mortgage $w /$ costly prepayment
- Endogenous prepayment with time-varying incentives
- Family Construct: continuum of members $i \in[0,1]$ in borrower hh
- Prepaying allows member i to (i) optimize over house size h_{t}^{*}, (ii) optimize over mortgage size m_{t}^{*}, (iii) reset interest rate r_{t}^{*}
- subject to iid cost $\kappa_{i, t} \sim \Gamma$ (rebated lump-sum back to borrowers)
- Guess and verify optimal threshold policy: refinance when $\kappa_{i, t}<\kappa_{t}^{*}$
- \Longrightarrow endogenous prepayment rate ρ_{t}

$$
\rho_{t} \equiv \Gamma\left(\kappa_{t}^{*}\right)=F(\overbrace{\text { rate incentive }}^{t} \text { }, \overbrace{\text { cash-out motive }_{t}}^{+})
$$

Borrowers take out realistic mortgages

- Long-term fixed-rate nominal mortgage w/ costly prepayment
- Endogenous prepayment with time-varying incentives
- New (and only new) mortgages subject to LTV constraint

Savers originate mortgages subject to frictions

- New mortgages ℓ_{t}^{*} tranched: ℓ_{t}^{*} of PO strips, $r_{t}^{*} \ell_{t}^{*}$ of IO strips
- Origination + securitization subject to a cost (rebated lump-sum)

$$
\Psi_{t}^{S}\left(\ell_{t}^{*}\right)=\frac{\eta_{m, t}}{1+\psi^{m}}\left(\frac{\ell_{t}^{*}}{\ell_{s s}^{*}}\right)^{1+\psi^{m}}, \quad \eta_{m, t} \sim \mathrm{AR}(1)
$$

- Saver assets:

1. PO strips m_{t}^{s} traded at price q_{t}^{m} with payoff

$$
Z_{t}^{m}=\underbrace{\nu}_{\text {sched. principal }}+\underbrace{(1-\nu) \rho_{t}}_{\text {unsched. principal }}+\underbrace{(1-\nu)\left(1-\rho_{t}\right) q_{t}^{m}}_{\text {value of future payments }}
$$

2. IO strips x_{t}^{s} traded at price q_{t}^{a} with payoff

$$
Z_{t}^{a}=\underbrace{1}_{\text {sched. interest }}+\underbrace{(1-\nu)\left(1-\rho_{t}\right) q_{t}^{a}}_{\text {value of future payments }}
$$

3. One-period nominal treasury debt b_{t}^{s} at price q_{t}, payoff equal to 1

- Savers otherwise identical to the rep agent in a standard NK model.

Firms and Govt Budget Constraint

- Continuum of intermediate producers
- Linear production function $Y_{t}=A_{t} N_{t}$
- Rotemberg price rigidity \Rightarrow standard New Keynesian Phillips Curve
- Consolidated government budget constraint

$$
T_{t}+q_{t} B_{t}^{G}+\text { Net QE Income }{ }_{t}=G+\Pi_{t}^{-1} B_{t-1}^{G}
$$

- Lump-sum taxes adjust to balance budget

$$
T_{t}=\bar{T}\left(\frac{B_{t}^{G}}{\bar{B}_{t}^{G}}\right)^{\phi T}
$$

Conventional and Unconventional MP

Conventional: Taylor Rule subject to the ZLB

$$
\frac{1}{q_{t}}=\max \left\{0,\left[\frac{1}{q_{t-1}}\right]^{\rho_{i}}\left[\frac{1}{\bar{q}}\left(\frac{\Pi_{t}}{\bar{\Pi}}\right)^{\phi_{\pi}}\left(\frac{Y_{t}}{\bar{Y}}\right)^{\phi_{y}}\right]^{1-\rho_{i}} m p_{t}\right\}
$$

Unconventional MP: Fed buys fraction $f_{t}^{Q E}$ of newly issued PO \& IO

$$
\begin{aligned}
m_{t}^{G} & =f_{t}^{Q E} \ell_{t}^{*}+(1-\nu)\left(1-\rho_{t}\right) \Pi_{t}^{-1} m_{t-1}^{G} \\
x_{t}^{G} & =f_{t}^{Q E} r_{t}^{*} \ell_{t}^{*}+(1-\nu)\left(1-\rho_{t}\right) \Pi_{t}^{-1} x_{t-1}^{G}
\end{aligned}
$$

Net income follows
Net QE Income ${ }_{t}=\Pi_{t}^{-1}\left(Z_{t}^{m} m_{t-1}^{G}+Z_{t}^{a} x_{t-1}^{G}\right)-\left(q_{t}^{m} m_{t}^{G}+q_{t}^{a} x_{t}^{G}\right)$

Market Clearing

Housing: $\quad \chi H_{t}^{B}+(1-\chi) \bar{H}^{S}=1$
New Originations: $\quad \chi \rho_{t} m_{t}^{*}=\ell_{t}^{*}=(1-\chi) \ell_{t}^{*, S}+f_{t}^{Q E} \ell_{t}^{*}$

$$
\begin{aligned}
\text { POs: } & (1-\chi) m_{t}^{S}+m_{t}^{G}=\chi m_{t} \\
\text { IOs: } & (1-\chi) x_{t}^{S}+x_{t}^{G}=\chi x_{t}
\end{aligned}
$$

Treasuries: $(1-\chi) b_{t}^{S}=B_{t}^{G}$
Labor: $\quad \chi N_{t}^{B}+(1-\chi) N_{t}^{s}=N_{t}$
Final goods: $\quad \chi C_{t}^{B}+(1-\chi) C_{t}^{S}+\delta p_{t}^{h}+G=Y_{t}$

Key Model Mechanisms

Refinancing Incentives

The FOC for refinancing can be written as

$$
\kappa_{t}^{*}=\Omega_{t}^{\times}\left(\bar{r}_{t}-r_{t}^{*}\right)+\mu_{t}\left[m_{t}^{*}-\Pi_{t}^{-1}(1-\nu) m_{t-1}\right]
$$

where

- $\bar{r}_{t}=\frac{x_{t-1}}{m_{t-1}}$ is the avg interest rate of outstanding mortgages
- r_{t}^{*} is the current (new) mortgage rate
- Ω_{t}^{x} is the marginal value of future interest payments
- μ_{t} is the multiplier on the LTV constraint

Refinancing Incentive ${ }_{t} \simeq$ Interest incentive $_{t}+$ Cash-out incentive $_{t}$

State Dependent Effects of Monetary Policy

Unconventional Monetary Policy

- QE acts by lowering origination + securitization costs
- FOC for originations:

$$
q_{t}^{m}+q_{t}^{a} r_{t}^{*}=1+\eta_{m, t}\left[\frac{\rho_{t} m_{t}^{*}\left(1-f_{t}^{Q E}\right)}{\rho_{s s} m_{s s}^{*}}\right]^{\psi^{m}}
$$

- QE stabilizes r_{t}^{*}, refinancing \uparrow, borrower (current) income \uparrow, GDP \uparrow

Quantitative Analysis: Monetary Policy Normalization

Policy Normalization: Benchmark

Study nonlinear transitions from state in 2015Q4 s.t.:

- No exogenous shocks from this point onwards
- Interest rate normalization follows Taylor Rule subject to ZLB
- QE normalization follows the September 2017 FOMC instructions

1. Maintenance regime in 2015Q4-2017Q4, purchases are such that

$$
m_{t}^{G}=m_{\max }^{G}
$$

where $m_{\text {max }}^{G}$ is the size of MBS holdings as of 2015Q4
2. Reinvestments subject to growing caps from 2017Q3 onwards

- Alternative Scenarios:

1. Early unwinding, reinvestment caps start in 2015Q4
2. Late unwinding, reinvestment caps start in 2020Q3

Policy Normalization Scenarios

Policy Normalization

Policy Normalization: Unexpected Crisis in 2019Q2

Policy Normalization: QE4 and Political Constraints

Policy Normalization: QE4 and Political Constraints

	Benchmark	Early Unwinding	Late Unwinding
r_{t}^{*}	+1.69 pp	+0.64 pp	+3.35 pp
p_{t}^{h}	-8.74%	-3.25%	-16.49%
C_{t}^{B}	-3.88%	-1.68%	-8.48%

Conclusion

- Unwinding later: great for borrowers if there is no new crisis
- Political constraints more likely to bind \Rightarrow crisis might be worse
- Unwinding earlier has mild short-run costs, "makes room" for QE4

Early stages! Next steps:

- Further explore feedback between unwinding and refinancing
- How does this affect interaction between conventional and unconventional MP?
- Portfolio composition: unwind MBS vs. treasuries

Appendix

Mortgage Spreads and Issuance Frictions

Relationship between originations and orig. costs changes after crisis.

Mortgage Spreads and Issuance Frictions, cont'd

- Data motivates functional form for issuance costs of the type

$$
1+\operatorname{cost}_{t}=\exp \left\{\beta_{t, 0}+\beta_{t, 1} \log G I R_{t}\right\}=\eta_{t} G I R_{t}^{\psi_{t}}
$$

- η_{t}, ψ_{t} rise during periods of financial stress
- Details on data/analysis
- Embed this relationship in a GE model with realistic mortgages
- QE moderates private GIR, issuance costs
- Reduced-form way of capturing QE effects

Mortgage Spreads and Issuance Frictions

How much of the variation in OPUCs can be explained by mortgage origination?

$$
\begin{array}{lcccc}
\log \mathrm{OPUC}_{t}=\beta_{s, 0}+\beta_{s, 1} \log \mathrm{GIR}_{t}+\epsilon_{t}, \quad s \in\{\text { pre, post }\} \\
\mathrm{GIR}_{t}=\frac{\text { Mortgages }_{t}-\left(1-\text { Prepayment }_{t}\right) \cdot \text { Mortgages }_{t-1}}{c} \text { Mortgages }_{t-1} \\
& \beta_{s, 0} & \beta_{s, 1} & \text { Adj. R } & N \\
\hline \text { Sample } & 3.183^{* * *} & 0.536^{* * *} & 0.676 & 58 \\
\hline \text { Pre (to 2008 Q2) } & (0.185) & (0.065) & & \\
& & & & \\
& \text { Post (since 2008 Q3) } & 6.318^{* * *} & 1.159^{* * *} & 0.517 \\
& (0.853) & (0.262) & & 38 \\
& & & & \\
\hline
\end{array}
$$

Calibration

Back

Parameter	Description	Value	Target
Demographics and Preferences			
χ	Fraction of borrowers	0.45	Avg share w/ neg fixed income pos, SCF 93-16
β_{s}	Discount factor savers	0.9959	Avg level of federal funds rate 2000-2018
β_{b}	Discount factor borrowers	0.9829	Value of housing to income of 8.89
φ	Frisch elasticity	1	Standard
ξ	Housing preference parameter	0.25	Davis and Ortalo-Magne (2011)
η_{b}	Borrower labor disutility	14.13	$N_{t}^{\text {b }}=0.33$
η_{s}	Saver labor disutility	8.28	$N_{\mathrm{t}}^{s}=0.33$
Production			
ε	Micro elasticity of substitution across varieties	6	20\% markup in SS
ζ	Rotemberg Menu Cost	98.37	Prices adjust once every five quarters
Government			
\bar{G}	SS Govt. Spending	$0.2 \times Y$	20\% for the US
\bar{B}^{6}	SS Govt. Debt	$0.14 \times Y$	Avg. maturity of 20 months, 70% of GDP
$\bar{\square}$	Trend Inflation	$1.02^{0.25}$	2% for the US
ϕ_{π}	Taylor rule: Inflation	1.5	Standard
ϕ_{y}	Taylor rule: Output	0.5/4	Standard
ρ_{i}	Taylor rule: Smoothing	0.8	Standard
ϕ_{τ}	Fiscal Rule	0.01	Faria-e-Castro (2018)
Housing and Mortgages			
$\theta^{L T V}$	Maximum LTV at origination	0.80	Max LTV for GSE conforming loans
ν	Contractual duration of mortgages	0.005	Standard
δ	Maintenance cost of housing	0.0065	2.5\% annual, standard
\bar{H}	Total stock of housing	1	Normalization
s_{κ}	SD of prepayment shock	0.152	Greenwald (2018)
μ_{κ}	Mean of prepayment cost shock	0.2902	$\rho_{\text {ss }}=0.0376$
$\eta_{\text {m, ss }}$	Mean financial friction	1.0969	Annual. mortgage spread of 2%
ϕ_{m}	Elasticity of Ψ to originations	2.5	
Shock Parameters			
ρ_{a}	Persistence of TFP	0.90	Standard
σ_{*}	SD of TFP Innovations	0.01	Standard
ρ_{i}	Persistence of nominal rate	0.80	Standard
ρ_{r}	Persistence of MP Shock	0.80	Standard
σ_{r}	SD of MP Shock Innovations	0.005	Standard
$\rho_{Q E}$	Persistence of QE	0.75	Estimated
$\sigma_{Q E}$	SD of QE Innovations	1	Normalization
ρ_{η}	Persistence of financial shock	0.75	
σ_{η}	SD of financial shock Innovations	1	Normalization

Estimating the state of the US economy in 20154

- Standard state space methods
- Use Kalman Filter to estimate paths for states 2000Q1-2015Q4
- Four exogenous shocks

$$
\left\{\varepsilon_{t}^{a}, \varepsilon_{t}^{r}, \varepsilon_{t}^{m}, \varepsilon_{t}^{Q E}\right\}_{t=0}^{T}
$$

- Four observables

1. (Detrended) PCE consumption
2. 3-month treasury bill rate
3. Share of mortgages owned by the Fed
4. Real mortgage growth

Data: Observables

Smoothed Exogenous Processes

Policy Normalization

Policy Normalization: Unexpected Crisis in 2019Q2

Policy Normalization: QE4 and Political Constraints

